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ABSTRACT source assessment. Cup anemometers (IEA, 1999) have been

Cub anemometers are commonly used for wind speed meV\Zidely used for wind speed measurement. Typical anemome-
P y P fers have three or four cups installed on a vertical shaft.

surement in the wind industry. Anemometer malfunctlonsTheir measurements provide important information of wind

lead to excessive errors in measurement and directly influ- . .
ence the wind energy development for a proposed wind farpesources for a proppsed site. Therefore, t_helr accuraty ca
site. In the PHM 2011 Data Challenge Competition tWOgreatly affect the estimated energy production and retarn o

i ' ... investment. Normally, the measurement of a cup anemometer
types of data need to be processed for anemometer condition .. . " .
diagnosis: paired data consisting of wind data from paire S within 2% error. However, under some circumstances, such

as the wear on the bearings, a missing cup or a failed shatft,
anemometers, and shear data composed of measuremenis

from an array of anemometers at different heights. Since than anemometer fails to provide accurate wind speed informa-

ﬁon, i.e., its measurements have excessive errors. litisatr
accuracy of anemometers can be severely affected by the ep-

vironmental factors such as icing and the tubular towelfjtse at damaged or out of tolerance anemometers be detected

in order to distinguish the cause due to anemometer failureasmd replaced in a timely manner.

from these factors, our methodologies start with elimimati Recent years have seen various methods proposed for the
irregular data (outliers) under the influence of environtaen anemometer condition diagnosis problem. In (Beltran, Llom
factors. For paired data, the relation between the noredliz bart, & Guerrero, 2009b), the nacelle anemometer fault de-
wind speed difference and the wind direction is extracted agection problem is studied, in which wind speeds at one targe
an important feature to reflect normal or abnormal behavioreanemometer are estimated by using two reference anemome-
of paired anemometers. Decisions regarding the condifion ders in its vicinity and the deviations of the estimates from
paired anemometers are made by comparing the features ethe measurements are used to determine the target anemome-
tracted from training and test data. For shear data, a poweer’s condition. In (Beltran, Llombart, & Guerrero, 2009a)

law model is fitted using the preprocessed and normalizethethod is introduced to select the range of data so that the un
data, and the sum of the squared residuals (SSR) is used tertainty in evaluation of anemometers’ health is minirdize
measure the health of an array of anemometers. Decisions afe predict the failure of a hot-wire anemometer, a method uti
made by comparing the SSRs of training and test data. Thizing a feature related sensor degradation and analyhieg t
performance of our proposed methods is evaluated througtiend of the feature is proposed (Delfino, Puttini, & Galvao,
the competition website. As a final result, our team ranked010). In the work by Kusiak, Zheng, and Zhang (2011), a
the second place overall in both student and professiottal cavirtual speed sensor is built based on historical wind speed

egories in this competition. data to monitor real sensors. In (Siegel & Lee, 2011), an
anemometer assessment methodology using residual process
1. INTRODUCTION ing and clustering techniques is proposed, in which thelresi

i - als of anemometers’ readings are computed and clustered to
Wind energy as a promising renewable energy source has at-

. o : etermine the anemometers’ conditions.
tracted considerable attention in recent years. The fiegt st
in the development of a productive wind farm is wind re- The PHM 2011 Data Challenge is focused on the detection
Longji Sun et.al. This is an open-access article distrithuteder the terms of of failed anemometers' Gener.a”y’.anemomet(ers are iedtall
the Creative Commons Attribution 3.0 United States Licensechwpermits 0N & meteorological tower. With single or paired anemome-

unrestricted use, distribution, and reproduction in anyimmedprovided the  ters at different heights, an array of anemometers is formed
original author and source are credited.
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Figure 1. An example 60m tower with three sensor locationg-igure 2. Normalized positions of sensors on a tower
(https://www.phmsociety.org/competition/phm/11/desh). (https://www.phmsociety.org/competition/phm/11/desh).

. : refers to a data instance only considered as an anomaly in
Figure 1 shows an example of a 60m meteorological tower

. . “a specific context. For example, in the work by Basu and
with sensors located at 59m, 49m and 39m, respectively. : S .

. . " eckesheimer (2007), anomalies in time series data are de-
Figure 2 shows the normalized position of sensors at

) L ' focted by comparing the value of a data point with the median
tower. A paired data file includes the measurements of paired, 4 :
. N i .~ of its neighborhood. Collective anomaly means that a col-
anemometers with 80° or 180° angle, the corresponding

: L I lection of data instances is anomalous, in which the redatio
wind direction and temperature. Each shear data file inslud : : . .
. .~ between data is exploited to detect anomalies. For instance
the measurements of an array of anemometers, wind direc- . . . .
Sequential anomaly detection techniques are used to find un-

tion, temperature and data collection time. The paired data . . ; .
. - : sual values in multiple time-series data (Chan & Mahoney,
consist of 12 training sets and the shear data consist of 2005)

training sets, each consists of 25 days of normal data. The
paired data also have 420 test files and the shear data 255In this paper, we will extract from training data important
test files, each of 5 days of data of unknown conditions. Thdeatures that can reflect normal collective patterns orbeha
problem is to detect failed anemometers in each test fileiors of anemometers in various contexts. Any deviation from
For paired data, it is to distinguish which one, or both ofthese normal patterns can indicate possible faulty canditi
anemometers, fail if not both of them work normally. The The rest of the paper is organized as follows. In Sectione, th
objective for each shear test file is to determine whethemethodology to analyze the paired dataset is provided. The
all anemometers are in a good condition or not. Readermethod to deal with shear data is elaborated in Section 3. The
are referred to the PHM 2011 Data Challenge websitgaper is concluded with some discussion in Section 4.
(https://www.phmsociety.org/competition/phm/11/diesh)

for more information. 2. METHODOLOGY FOR PAIRED DATA ANALYSIS

Since, in training files, only normal data are provided, The method for paired data analysis mainly includes five
the problem of anemometer fault detection is essentiallysteps: data preprocessing, feature extraction, dengigatg
anomaly detection. Various techniques have been developddrn search and decision making. Firstly, a preprocess$apy s
for anomaly detection, including classification based mésh is taken to eliminate some apparently incorrect and statist
(Duda, Hart, & Stork, 2000), statistical approaches (Btirne cally useless measurements. Secondly, a feature, namely, t
& Lewis, 1994), and clustering techniques (R. Smith, Bivens relation between the discrepancy of the paired anemometer
Embrechts, Palagiri, & Szymanski, 2002). Anomaly canmeasurements and the wind direction, is extracted from the
be categorized into point anomaly, contextual anomaly, angreprocessed data. A further denoising step is taken ta@eedu
collective anomaly (Chandola, Banerjee, & Kumar, 2009).the environmental effects and make the feature more promi-
Point anomaly, i.e., anomalous individual data instanse, inent in different situations. Then, an algorithm is desijtee
the most studied anomaly and the focus of most of the exsearch for each test data file the most matched pattern from
isting anomaly detection techniques. Contextual anomalyraining data. Finally, decisions are made based on the rela
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tion between the pattern under testing and the matched pat-
tern. 1,01

2.1. Data Preprocessing

Failed anemometers cannot provide accurate wind speed

measurements. On the other hand, environmental factors, 7 = '
.. © 1~ © ¥
such as icing can also affect the accuracy of measurements & 3 £2
considerably. To avoid false alarms, it is important toidist oA ——

guish these two types of situations. Some preprocessing of
the raw measurements is required.

The preprocessing step is composed of two stages. In the /
first stage, data undergo a measurement range test. Namely_—
only measurements within a valid measurement range are
meaningful. Factors, such as sensor noise and icing, resgure 3. The wind field around a tubular mast (from the IEA
sult in measurements outside this range, which fail to pro41999 report).
vide useful information and should be eliminated. For
this problem, the range is set to be from 0.4m/s to 75m/s
(https://www.phmsociety.org/competition/phm/11/gdegh). paired anemometer measurements in some wind directions.
This suggests that the relation between the wind speed-diffe

In the second stage, detection of icing conditions is con- . : : L o
SO : o : . ence and its corresponding wind direction can be utilizeal as
ducted. Icing is a leading factor in introducing errors in

measurement data. Empirical results (Kenyon & Blitterdor key feature to describe the condition of paired anemometers

1996) and our observations of the training data have show;l;he wind speed difference is computed as follows:

that icing conditions have the following characteristics: _ st — 52 1
~ max(s(D), s(2)

1) When the tempgrature is at or below the icing point, the}/vheres(l) is the wind speed of anemometer 1 asfd is
standard deviation of the wind speed measurements i, \ind speed of anemometer 2. Normalization is taken to
Z€ro or near zero. simplify the subsequent pattern search step. This is differ

2) The standard deviation of the wind direction measureent from (Lubitz, 2009), where = s(1)/s() is used as a
ments is zero or near zero. wind difference indicator to evaluate the tower effect appr

imation model. Figures 4(a) and 4(b) show the normalized

In (Schaffner, 2002), it is suggested that the measurementgind speed difference as a function of the wind direction for

in six hours before and after the icing points should be dispairTrngl and pairTrng7 for example. Figures 5(a) and 5(b)

carded, considering that the effect of icing begins lon@teef plot the same relation for two test data files. Since theitngin

an anemometer is frozen and continues for some time beforata are from normal anemometers, the relations between the

the frozen effect completely disappears. Since we have limwind speed difference and the wind direction based on these

ited data in this competition, especially for test data, aemo training files are the representatives of normal behaviérs o

practical range is adopted in which only the data in 30 min-anemometers. Deviations from these representative patter

utes before and after icing points are discarded. may indicate failure of anemometers in test data.

2.2. Feature Extraction 2.3. Denoising

In an ideal environment, the measurements of a pair of norin Figure 4(a), we observe that arousit and360°, the wind

mal anemometers should be very close to each other givespeed difference deviates from zero, while for the rest afiwi
that they measure the wind speeds at the same height withdirections, the difference varies around zero. This mayuge d
very close distance. However, this is not always the case faio the normalized position of the paired anemometers with re
the given training data. It can be shown that the mast of thespect to the mast. Besides, there are some data pointegolat
tubular tower on which the paired anemometers are mountefilom the majority of the rest, which are marked with circle in
plays an important role (Lubitz, 2009). The mast of the towerthe figure. This situation is more severe in test data. Becaus
will generate a wake behind it, acceleration around it and af the limited size, the percentage of isolated points in tes
retardation upwind of it (IEA, 1999). Figure 3 shows a wind data can be large. By checking the original data, the isblate
field around the mast of a tubular tower. The numbers indata points generally correspond to a low wind temperature
dicate the ratio between local wind speeds and the free-fieldthen anemometers may run slow. This is the case for all
wind speed. This fact explains the significant difference intraining data. To make the pattern more prominent and make
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Figure 4. Normalized wind speed difference as a function ofigure 5. Normalized wind speed difference as a function of
wind direction for training data. wind direction for test data.

it easier for test data to find a match, we consider these isqoint (d, s), the average distance from knearest neighbors
lated points as outliers and they should be eliminated. is calculated,

There are many ways to remove outliers. The method 1k d—d\?2
adopted here is based on the average distance of each data Das) = - Z ( 3601) + (s —s;)? 3)
point from itsk nearest neighbors, the larger of which indi- i=1
cates itis more likely to be an outlier. More information abo where{(d;, s;),i = 1,--- , k} is the set oft nearest neigh-
the distance-based outlier detection techniques can elfou pors. Since the distribution of data points is differentitied
in (Knorr, Ng, & Tucakov, 2000). The distance between two gt wind direction, we compai®,, ., only with that of those

data points in Figure 4(a) is defined as follows: data points of similar wind directions. A window of length
\/ d—d.\2 Ad moves along the wind direction axis. For all data points
D= <H> + (s, — 55)? (2 in this window, those whose average distance is among the
360 largesta% are marked as outliers and are eliminated. The

whered; (d;) is the wind direction and; (s;) is the wind  performance of this method depends on paranigtéyd and
speed difference along that direction. Normalizifadpy 360° a. In our experiments, we sét= 10, Ad = 20 anda = 10
is to make these two quantities comparable. For every datahich gives good empirical results. Figures 6(a) and 6(b)
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Figure 6. Normalized wind speed difference vs wind direc-Figure 7. Normalized wind speed difference vs wind direc-
tion for training data after denoising. tion for test data after denoising.

are the relation of wind speed difference and wind directio

"o point clouds are formed. Figure 8 is an example when
after removing outliers (isolated points). This can als@ape P g P

N = 2. The distance of two point clouds can be measured by

223d7t(c;,;eSt data files and the results are shown in Figuegs 7( i gistance between their centroids. More specifically,
. 1
2.4. Pattern Search Dis(q,p) = 171154 = Spll 4

Training data are collected from normal anemometers. Since

there are twelve training files, there are twelve normal

patterns under different configurations. In this step, wedne whereS|, is anN-dimensional vector, each element of which
to find, for each test file, the most matched training profite fo is the mean wind speed difference for that wind directiore Th
comparison. Distance is the most used metric to measure tteame applies fof,, p = 1,---,12. Normalization overV
similarity of two patterns. Given a training fileand a test is done to eliminate the effect of the number of dimensions.
file ¢, assume that there are a total/éfwind directions that ~ Another important factor is the shape of data distributiat: p
both training and test files have wind speed difference valtern. The similar shape indicates a similar anemometer con-
ues. If these values are plotted in Aidimensional space, figuration. The correlation coefficient is adopted and deffine
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represent the centroids of the clouds.

(2) With the same assumption, if anemometer 2 fails, the pat-

<§q, §p> tern shows an upper shift. That is, the wind speed differ-

p(q,p) = W (5) ence values will take more positive values. There are
a2l many such kinds of patterns in test data, which shows

:—|ere, <.t’h.> standls tf_or the ”]Jff“?r ptrotdhuct of two_vglctorti. -I;ae that this assumption may be right. Figures 10 and 11 are
arger the correlation coefficient, the more similar the two o amles of these two conditions,

shapes op andq are. The training profile* is selected for

as follows:

comparison with test filg if (3) If both anemometers fail, the pattern is not predictable
Dis(q,p) i.e., it does not show any of the above characteristics in
p* = arg min (’ ++/1—p? (q,p)) (6) an obvious way.
NN B | |
The objective function is the average of the distance measur ~ T0 make a decision for each test file, the following
and shape measure. algorithm is designed taking into account the above as-
sumptions. Assume that for test filg training file p is
2.5. Decision Making selected for comparison through the pattern search step.

) N ] For wind directiond where wind speed difference val-
There are four possible conditions of the paired anemometer,os are available in both training and test data, define

in the test data: both are normal (0), anemometer 1 fails (1)Sp(d),mz'n = min{S,, (d), -+ , S, (d)} andS,(d)-maz =

a}nemometer 2 fails (2), and both fail (3). I_:_ollowmg assUMP-yax (S, (d), - ,S,. (d)}, assuming that there avewind

tions are made regarding these four conditions: speed difference values at wind directidrin training file

(0) If both anemometers work normally, the feature, i.ee, th p. Then for test datg and for the same directiod, count
relation between the wind speed difference and the windhe number of data points in, above or below the range
direction, should be very similar to its corresponding [S,(d)-min, S,(d)-mazx], which are denoted a€; (d),
matched training pattern. That is, the feature extractedy,above(d), and Cy peiow(d), respectively. There are two
from the test data file will have a significant overlap with ways to proceed based on these counts. One is to make a
the corresponding training data pattern. Figures@&n  decision for each wind direction and fuse these decisions to
example. generate a global decision (decision fusion). The otheli®ne

(1) Itis assumed that if an anemometer fails, its reading iC @dd up the total number of data points in, above or below
generally smaller than the true value, especially for me{n€ normal ranges and make a decision based on that (data fu-
chanical failures. Based on the definition of the windSion)- Since we have no ground truth and the characteristics
speed difference in Eqg. (1), if anemometer 1 fails, theof wind speed difference vary for different wind directions
pattern will have a downward shift. Namely, the wind W€ develop the following hybrid method. The whaé0® is

speed difference values will take more negative value&ivided into 36 bins. The counts in each bin add up, i.e.,
with the change of wind direction. )
Coaa(i) = Z Co,za(d) (1)

IFigures 9, 10, and 11 can be viewed better with a color print. dé Bin;
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Figure 10. Significant downward shift of the pattern exedct Figure 11. Upper shift of the pattern extracted from pair-
from pairdata36 compared to the pattern from pairTrng9. data50 compared to the pattern from pairTrng10.

wherei = 1,---,36 andxzz can bein, above andbelow.
Decision is made for each bin using the following rule: while the NWSD pattern with respect to the wind direction
0 it Cpin(i) > T can_help i_d_entify s?mila_r anemometer configurations, thus
. 1 it Cypetow(i) > T putting training/testing-file comparison and anomaly dete
Uq(i) = 9 if C ’Hbm(l-) > T, (8)  tion in the same context. If raw data instead of the proposed
3 Othg’rwisé ' feature is used, almost all test files look different/ermre

‘ _ ‘ compared to the training files.
where threshold}, = C‘”’"(’HCQ*G”"’;(Z)JFC“*”“”“’(”. Thatis,
whichever of the first three conditions dominating indisate 3. METHODOLOGY FOR SHEAR DATA ANALYSIS

the condition of that bin. If there is no one that dominates, . .
- . o - . For shear data, the problem is to decide whether all of ay arra

decision 3 is made. The majority of local decisions is cho- o
of anemometers work normally. Similarly, a data preprocess

sen as the global decision. ‘This hybrid method can not Or”Yng step has to be taken to eliminate some obviously useless

smooth out the noise effect, but also preserve the variafion o :
data pattern in different directions. Note that if no datanfm data. Specifically, the measurement range test is condutted
' should be noted that the effect of icing conditions in colé cl

?;itlr']g some bins, those bins do not participate in cjeclslor|]”nate is huge so that a majority of data are under the influence

to different extents (Schaffner, 2002). For this probleng, t
same criteria as specified for paired data are used to partial
mitigate the icing effect.

In the competition, the results are evaluated based on wheth

the proposed algorithm can accurately determines the €ond8.1. Irregular Data Elimination

tions of the paired anemometers for each test file. Credit fobenerally the wind speed increases with the height because
each file is gained only if the decisions for both anemome- '

ters are correct. Visualization of our results for pairethda of the wind shear effect. However, in the training data with

is provided in Figure 12 on the top of next page. Conditiona” anemometers in a normal condition, there exist many mea-

indicators 0, 1, 2, and 3 are defined in Section 2.5. There arséurements violating this rule. This indicates that the mess

a total of 287 test files with decision 0, 43 files with decisionments do not alwqys reflect the true wind speeds, which may
. . o . ; - be due to the environmental factors rather than anemometer
1, 39 files with decision 2, and 51 files with decision 3.

failures. We define a record containing this kind of measure-
For paired data analysis, the normalized wind speed differments as irregular data and they make the detection problem
ence (NWSD) as a function of the wind direction is extractedmore challenging. In Table 1, we summarize the mean tem-
as a main feature for the purpose of faulty anemometer deperature and the percentage of irregular data for all 7 shear
tection. Since wind data are collected from different emwvir  training files. It is noted that the ones with lower temperasu
ments, under different weather conditions and with difiére generally have more irregular data. Thus, the irregulasity
tower configurations, taking the difference and normailizat more likely the result of icing effects. To reduce the effefct
of paired data can reduce environmental impacts effegtivel icing on decision making, we eliminate all the irregularadat

2.6. Results and Discussion
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ShearTrng file | Mean Temperature (°F) | Irregular Data (%) B ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 11.45 11 L8} ]
2 50.81 8 16r
3 45.20 3 UM
B 121
4 3.07 67 z
g 1
5 3.23 68 T
s 0.8
6 11.02 35 06
7 10.93 35 04l
0.2
Table 1. Mean temperature and the percentage of irregular o o e o o 2o e wo
data for shear training files. Wind direction (degree)

. . . . . Figure 13. Wind speed ratio between 59m and 51m versus
As mentioned in Section 2, the configuration of the tower\g’ind direction for shearTrng_.

also has effects on wind speed measurements. In Figure 13,

the ratio of wind speeds at 59m and 51m as a function of the

wind direction is plotted. It shows that aroufid®, the direc-

tion in which the anemometers are installed, the ratio takesomparable for different files, normalization by the maximu

significantly different values. The measurements arourd thvalue of an array of wind speeds at each time is taken. As a

wind directions, to which the anemometers are pointed, fairesult, all normalized wind speed fall into the rangg(®fl].

to reflect the normal situation and therefore are eliminated Figure 14 shows an example of the fitted power law model
and normalized sample data points for shearTrngl. SSR is

3.2. Model fitting used as a performance measure of the given shear data.

After eliminating ir'regular data due to icipg and/or t.he B:nw 3.3. Decision Making

we assume the failure of anemometers is the dominating fac-

tor of irregular patterns in test data, if any. One widelydise There are three types of shear data files: three anemometers
wind shear model is a power law model (Burton, Sharpeat (57m, 45m, 35m), four anemometers at (59m, 51m, 30m,

Jenkins, & Bossanyi, 2001), and is given as follows, 10m) and four anemometers at (49m, 39m, 30m, 10m). For
o the first two types, the training and test data have very sim-
S h . . . T
== () (9) ilar temperature. Since there is only one and two training
Sr hy files for these two types of data respectively, a 25-day train

wheres is the wind speed at some specific heights,. the  ing data file is divided into 5 files with 5 days of data each.
wind speed at a reference height anda the shear exponent. The SSRs are calculated as shown in Figure 15 for the four-
If we use the shear data to fit the model, we expect that thanemometer configuration for 5 smaller training files and 20
sum of squared residuals (SSR) tends to be small for normaést files. The decision making rule is as follows. The aver-
data while be relatively large for abnormal data. Since theage of five SSR values from training data is used as a thresh-
wind speed changes across time and space, to make the S8H, partially eliminating the randomness such as noise. If
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Figure 16. Results for shear data
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Figure 14. Normalized wind speeds measurements and fittdgéigure 15. SSR for training and testing data for the four-
wind speeds using a power law model. anemometer configuration (59m, 51m, 30m, 10m).

the SSR of a test file is greater than this threshold, the dec'é\rray. The assumption is that a faulty array tends to have a

sion that not all anemometer working normally is made. For -
the configuration with (49m, 39m, 30m, 10m), there are tWOIc_"slrger SSR compared to that of training data of the same con-

i - . iguration. Data of different time of a day used for model
types of temperature values: below the icing points and muc

above the icing points. This fact motivates us to compare theIttlng may influence the decision. This is because the wind

. T . Shear is also a function of the time of a day and exhibits the
test data with the training files of similar temperature. The . L : . )

: . diurnal variation, i.e., the wind shear exponent in the day-
rest of algorithm remains the same.

time is significantly smaller than at night (K. Smith, Raridal
Malcolm, Kelley, & Smith, 2002). Therefore, an improved
feature may be SSR as a function of the time of a day, the
In the competition, the results are evaluated based on whethpattern variation of which can also be used as an indicator of
the proposed algorithm can accurately determine the condpossible faults. This will be investigated in our future wor
tion of an array of anemometers for each test file. Credit for

each file is gained if the decision about whether any faulty4. CONCLUSIONS

anemometer occurs among the array of anemometers is cqr- ,, . . .
9 Y qn this paper, we have developed a series of methods includ-

rect. Visualization of our results for shear data is prodide ing data preprocessing, feature extraction and pattermife

Figure 16. A test file without any faulty anemometer is indi- cation to solve the anemometer condition diagnosis problem
cated with number 0, otherwise with number 1. There are a g P

total of 193 files with decision 0 and 62 files with decision 1. .Of the PHM 201; Data_ Challenge Competition. The main
idea of the algorithms is to extract useful features showing

For shear data, the performance of the proposed algorithmiecernable patterns of training and test data so that they c
largely depends on the elimination of noisy and irregulaada reflect the health condition of anemometers. Since the data
The sum of squared residuals (SSR) after fitting a power lawpatterns may also be significantly influenced by various fac-
model for an array of normalized wind speed measurement®rs such as icing and the tower rather than anemometer fail-
is used as the main feature to detect if any fault exists in therres, considerable efforts have been taken for eliminaifon

3.4. Results and Discussion
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