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ABSTRACT 

Cup anemometers are frequently employed in the wind 
power industry for wind resource assessment at prospective 
wind farm sites.  In this paper, we demonstrate a method for 
identifying faulty three cup anemometers. This method is 
applicable to cases where data is available from two or more 
anemometers at equal height and cases where data is 
available from anemometers at different heights.  It is based 
on examining the Weibull parameters of the distribution 
generated from the difference between the anemometer’s 
reported measurements and utilizing a discriminant function 
technique to separate out the data corresponding to bad cup 
anemometers.  For anemometers at different heights, only 
data from the same height pair combinations are compared.  
In addition, various preprocessing techniques are discussed 
to improve performance of the algorithm.  These include 
removing data that corresponds to poor wind directions for 
comparing the anemometers and removing data that 
corresponds to frozen anemometers. These methods are 
employed on the data from the PHM 2011 Data 
Competition with results presented. 

1. INTRODUCTION 

The issue of identifying faulty anemometers used during 
wind resource assessment at prospective wind farm sites has 
increased in recent years as wind energy grows in 
importance due to declining fossil fuel availability.  In wind 
resource assessment, the need for effective wind estimation 
is critical. If anemometer readings differ from reality by a 
small amount, the cost in terms of return on investment can 
be large.   

When data from anemometers at equal height above the 

ground (and therefore equal wind speeds in principle) are 
available, previous studies (Ye, Veeramachaneni, Yan., and 
Osadciw, 2009) have shown that the differences in wind 
speed between sensors at equal height can be characterized 
as a Weibull distribution.  To identify broken anemometers 
the Weibull parameters of difference between wind speeds 
were estimated and then compared against thresholds for the 
shape and scale parameters. These thresholds where 
heuristically determined based on experience with 
previously good data. The researchers go on further to 
propose using the area under the cumulative distribution 
function (cdf) as a feature for discrimination. Though the 
method has demonstrated good results, there still remains 
the issue of analytically choosing an appropriate threshold.  
In this paper we utilize a discriminant analysis to generate 
the minimum-error-rate thresholds for distinguishing the 
bad sensor data sets from the good sensor data sets. The 
features we chose to discriminate on are the Weibull 
parameters characterizing the difference in the wind speeds 
between two anemometers. In cases where there were not 
anemometers paired at the same height a physics based 
model of the wind speed versus height was assumed to feed 
into the discriminant functions. 

Discriminant analysis is a powerful set of tools that tries to 
analytically determine classification boundaries based on 
the statistical behavior of the features used to characterize 
the data. These boundaries can be further adjusted based on 
the probability of each of the classes occurring.  Before the 
discriminant functions can be generated a certain amount of 
preprocessing must be done to condition the data. This is 
done to remove certain environmental and terrain effects 
that may skew the thresholds. 
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Figure 1-Effects of Freezing Conditions on Raw 

Anemometer Data 

The data from the PHM 2011 Data Competition was 
organized as follows. It was divided into two groups: 
‘paired’ anemometer data containing two sensors at equal 
height and ‘shear’ anemometer data containing either three 
or four sensors at different heights above the ground. The 
wind speed measurements for each sensor were averaged 
over ten minutes and provided in the data, along with 
maximum, minimum, and standard deviation within each 
averaged ten minute segment. In addition, wind direction 
and temperature data were provided alongside the 
anemometer readings. 

The goal of the PHM 2011 Data Competition was to 
determine, from provided data, whether given cup 
anemometers were damaged and reporting erroneous 
readings. Per competition rules, anemometers that become 
frozen due to weather effects do not count as damaged.  
These had to be identified in order to prevent false 
diagnoses. There are 420 test data files for the ‘paired’ case 
and 255 test data files for the ‘shear’ case.  In the ‘paired’ 
case, a point is awarded when a data file is properly 
diagnosed, that is, when both sensors are correctly marked 
as damaged or undamaged. In the ‘shear’ case, a point was 
awarded if the competitor correctly determined that a sensor 
(if any) is damaged in the data file. In addition to the test 
data files, there were 12 training data files for both the 
‘paired’ and 7 training data files for the ‘shear’ case. For 
these files, the anemometers guaranteed to be good, that is, 
not broken. So it was not necessary in the ‘shear’ case to 
identify the specific damaged anemometer. In the 2011 
PHM Competition, submissions were graded and a leader 
board was provided to show the rankings of each team 
relative to one another. However, the actual scores for each 
submission were obscured and the labeled data was not 
released, making it impossible to accurately compare one 
algorithm’s performance to another. 

 
Figure 2-Wind Direction versus Reported Difference 

between Sensors at Equal Heights 

The rest of the paper is organized as follows. In 
'Methodology' the data preprocessing, discriminant function 
technique, 'initial guess' estimation for paired data 
corresponding to anemometers at equal height, and 'initial 
guess' estimation for shear data corresponding to 
anemometers at different heights are presented, and in 
'Conclusion' we mention some concluding remarks and 
point towards areas of future research. Throughout the 
paper, we will refer to data that corresponds to undamaged 
sensors as ‘good data’ and data from damaged sensors as 
‘bad data’. 

2. METHODOLOGY 

2.1. Data Preprocessing 

There were several problems with the raw data used that had 
to be addressed before methods could be applied to 
determine faulty anemometers. At times, the anemometers 
would freeze and stop moving, even if they were not 
broken, and this would skew the algorithm towards 
overpredicting bad sensors. The method used to 
accommodate this was to search the data for measurements 
that were both below freezing and stuck on the lowest 
possible wind speed reported by the anemometer.  This data 
was then discarded under the assumption that the sensor was 
frozen and reporting incorrectly.  

For the ‘shear’ data set, if even one of the anemometers was 
seemingly frozen, all the data for that unit of time was 
discarded. Figure 1 gives an example of frozen data within 
the data set. One can clearly see where the reported wind 
speed drops to near zero which corresponds to temperatures 
below freezing. 

A second issue that turned up was that, due to the 
anemometer placement (whether at 90 degrees to each other 
or 180 degrees), the observed mean difference between 
wind speed for anemometers at equal heights (such as found 
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in the 'paired' data) would vary according to wind direction.  
This caused the differences to be more spread out because 
of the statistics in a few particular directions. To deal with 
this problem, each ‘paired’ data file was divided into bins 30 
degrees in size. Then the standard deviation of the 
percentage differences between the two anemometers at 
each ten minute average was calculated for every bin and 
the two bins with the highest wind speed difference between 
the two anemometers were discarded. This threw out wind 
directions that corresponded to the greatest difference in 
wind speeds between anemometers at equal height, thus 
causing the remaining data to have a much lower standard 
deviation.  In Figure 2, we show the variation between 
reported differences in wind speed versus wind direction for 
a training data set.  In this figure data from 0 and 90 degrees 
would be discarded. If there were more than two directions 
that skewed the statistics they could also be discarded. 

2.2. Discriminant Function Technique 

The Discriminant analysis is a method of pattern 
classification that is known to achieve the minimum-error-
rate classification for a given feature set (Duda, R. O, Hart, 
P. E., Stork, D. G., 2001). For each classification, a separate 
discriminant function is derived and evaluated for each 
feature vector. Then a particular set of data is determined to 
be of the class with the highest discriminant function value.  
This in effect yields the minimum error rate classification in 
the assigning of a class. For this application, there are two 
classes: the good sensors and the bad sensors and the 
features used to describe the class are the shape and scale 
parameters of the Weibull distribution of the difference in 
wind speeds. The formula for computing a discriminant 

ction g( o a matrix is given by, fun x) f r arbitr ry covariance 
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Here   and ࣆ  refer to the covariance matrix and mean 
vectors of the features, respectively. The mean vector can be 
understood as the center of a class and the covariance matrix 
describes how scattered the points in the class are 
distributed about the center. ܲሺ߱ሻ  refers to the a priori 
probability that a given test file belongs to the class which 

the discriminant function corresponds to. In equation 1, ࢞ 
refers to the feature vector for a particular set of data under 
consideration, that is, the Weibull parameters generated 
from the percentage difference between the two 
anemometers. This number could typically be obtained from 
the failure rate of the sensors. Since that was not known it 
was estimated by examining the percentage of the files that 
the initial estimation classified as bad. To apply the 
Discriminant Function Technique, it is necessary to have 
labeled or known data from both classes. Since there was no 
labeled bad data provided, a method had to be devised to get 
an initial guess at the 'bad sensor' class. Exactly how the 
initial classifications were determined for both the paired 
and shear cases is described in the next section. If more 
detailed information on discriminant function analysis is 
desired (Wolverton, C., Wagner, T., 1969) is an excellent 
resource. 

2.3. Paired Data 

Previous research (Ye et al, 2009) has demonstrated that 
anemometers at similar heights exhibit a Weibull 
distribution in the time domain differences between their 
mean reported wind speeds. In their paper, the shape and 
scale parameters of the Weibull distribution from a week's 
worth of data is estimated using a maximum likelihood 
estimation and results over a number of weeks are plotted 
on a graph with the scale parameter on the x-axis and shape 
parameter on the y-axis. Then, a visual investigation is 
performed and a 'cloud' of good performing sensors is 
identified by drawing an oval around the area of highest 
density, leaving the points outside the oval to be flagged as 
bad. This analysis was applied to obtain the initial bad set of 
files corresponding to good sensors.  In our case, since the 
data in the PHM 2011 Data Competition was provided in 
sets of five days, we used five days as the interval of time 
for which to calculate scale and shape parameters. From this 
set of data, we employed two methods to label files as either 
good sensor or bad sensors for the discriminant analysis. 
Secondly, a hypothesis test was used to determine if a set of 
data came from a Weibull distribution from the good sensor 
class.  The Kolmogorov–Smirnov (K-S) test (Eadie, W. T., 
Drijard, D., James, F. E, Roos, M., & Sadoulet, B., 1971) 
was implemented as the hypothesis test with the null 
hypothesis being that the data under consideration was from 
the same distribution as a good pair of sensors.  
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Figure 3-Confidence Level for each Test File in rejecting 

the null hypothesis 

To accomplish this, the percentage difference between the 
anemometers was calculated for every 10 minute average in 
each of the training files (which were known to be good 
data). Each training file formed a distribution of percentage 
differences. Then, for each of the test files, the same process 
was undertaken and the K-S test was performed for the test 
file against each one of the 'good' distributions. If the null 
hypothesis, that the test file and training file were from the 
same distribution, was rejected for all 'good' distributions 
with 5% significance level, then the file was flagged as bad. 
On the other hand, if the test file's distribution could be 
matched with at least one training file at 5% significance 
level, then the test file was marked good. In order to be 
assured that the initial data in the bad class was truly from 
bad cases the intersection of the K-S set and the set derived 
from visual inspection of the data (that is, the files common 
to both sets) was used to obtain the set of bad sensors for 
applying the discriminant analysis. 

Figure 3 shows the confidence level of rejecting the null 
hypothesis for each test file, given the set of training data 
files. As can be seen, this method is another form of 
thresholding where the threshold in this case is the 
significance level. A significance level below 5% indicates 
that there is a less than five percent probability that the null 
hypothesis is correct. 

Figure 4 shows the plot of the Weibull parameters for the 
paired data set, both training and test data.  Note the ‘cloud’ 
of data points in the lower left corner clustered together 
corresponding to the estimated 'good' data files. So in 
general ‘good’ data files have lower scale parameters than 
‘bad’ data files. A single training data point seems 
disconnected from the rest of the training point, with a much 
higher than expected scale parameter.  This point (circled in 
the figure) was discarded when choosing our threshold, as it 
corresponded to a data file where a large amount of points 
had been thrown out due to the wind direction preprocessing 
described earlier. 

 
Figure 4-Scatter Plot of Weibull Parameters for all Training 

and Test Files in Paired Data 

For the paired data, a competition requirement was to 
identify not only when a sensor was bad but which one of 
the pair was defective. In order to identify which specific 
anemometer has failed, the assumption was made that the 
anemometer with the lower mean reported wind speed will 
be the one that is bad. This was based on a consideration of 
the types of damage possible to cup anemometers. For 
example, a chipped or cracked cup will not hold wind as 
well as a normal one and as such should report a lower wind 
speed. 

2.4. Shear Data 

In the shear data, if there were sensors paired at each height 
then the previous methods for getting initial labeled data 
would be effective. However, that was not the case here.  
Data were given over various days with only one sensor at 
each height and to make matters more difficult, the heights 
were not consistent from file to file.  

So to generate some initial labels for both good and bad 
classes, a physics-based model was employed. There are 
two different models that can be used to characterize the 
relationship between wind speed and height. The first, 
referred to as the wi  prof e power law (Oke, T, 1987).  It 
is of the form,  

nd il

ݑ
ݑ

ൌ ൬
ݖ
ݖ
൰
ఈ

 (5) 

Where u and z is the mean wind speed and height, 
respectively under consideration,  ݑ  and ݖ  refer to the 
wind speed and height at a given reference point (usually 10 
meters), and α is an empirically derived constant whose 
value depends on the stability of the atmosphere. For 
conditions of neutral stability, α is approximately 0.143. 
This equation assumes the relationship follows a simple 
power relation (Touma, J, S, 1977).  
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Figure 5-CDF of R2 for a training file in the Shear data set 

This equation does not take into account certain terrain 
features such as the roughness of the surface or the level of 
atmospheric stability, which can greatly affect the reported 
wind speeds. It only requires the mean wind speed at a 
'reference' point, usually 10 meters. The second model, 
referred to as e 'log ic wind profile law' (Oke, 1987), 
is show in q

 th arithm
n  e uation 6, 

௭ݑ ൌ
כݑ
ߢ ݈݊ ൬

ݖ െ ݀
ݖ

൰  ߰ሺݖ, ,ݖ  ሻ൨     (6)ܮ

Equation 6 is valid from the surface up to around 1000m. It 
takes stability and surface roughness into account, but 
requires a number of known parameters, such as the zero 
plane displacement, friction velocity, and the Monin-
Obukhov stability parameter, none of which were available 
to us.  

Since the physical parameters were not known, a general 
log-linear relationship of the wind speed versus height from 
the ground was assumed. With the assumption that the data 
should fit a logarithmic curve, the exponential of the data 
was taken. The results of which should produce wind speeds 
that are a linear function of height. Once this conversion has 
been made, a simple linear regression analysis was 
performed to determine residuals and goodness of fit. The 
result of the linear fit analysis, R2, gives a quantifiable value 
that can be used to classify on a sample by sample basis. 
However, the problem still remained on what an appropriate 
R2 threshold should be to label a file as bad. To attempt at a 
systematic way to arrive at a threshold the R2 values were 
then used to make histograms for estimating the probability 
density function (PDF), with careful consideration given to 
keeping bin edges equal. The PDF's were then integrated to 
form the cumulative density function (CDF). The CDFs 
represent the percentage of files equal to or below a 
particular R2 value.  

 

 
Figure 6-Mean and Standard Deviation for each R2 value 

analyzed in Shear data 

Figure 5 shows a CDF plot for a typical training data file. 
Notice that there are very few files that don't have at least a 
R2 value above 0.7. This is in line with expectations that a 
log-linear fit does a good job modeling the wind profile as a 
function of height. 

To arrive at an exact threshold value the CDF's were then 
analyzed at six values of R2, ranging from 0.3 to 0.8, to 
determine what percentage of data points per file were less 
than or equal to the R2 values of interest. The idea being that 
the training data would have less percentage of data points 
below a particular R2 value when compared to test data that 
has potential bad sensors in it. At each threshold the mean 
and standard deviation of the number of files labeled as bad 
were then calculated for both training and test data. Figure 6 
shows the plots of mean and standard deviation for each R2 
value analyzed.  

 
Figure 7-CDF of R2 for a test file in the Shear data set 

 

5 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

 
Figure 8-Scatter Plot of Weibull Parameters for all Training 

and Test Files in Shear Data (49 & 10 Meter Case) 

The R2 value with the largest discrepancy between training 
and test data was then selected as the threshold value for 
labeling a file as bad. The assumption was made that the 
larger difference between the two data sets at a given R2 
value would indicate that the optimal threshold for 
discriminating between the two classes was achieved.  
 
Since this threshold is on a per sample basis and the desire 
of the competition was to label the data per day, it had to be 
worked out how many files flagged during a day would 
cause the data to be labeled as bad. To come up with this 
threshold the per sample R2 threshold was analyzed to 
determine the max percentage of training data points that 
were included in all bins less than or equal to the chosen 
threshold. Since it was known that all training data was 
considered good then it was assumed that whatever 
percentage of training files labeled as bad represented some 
acceptable percentage per day. Any days that had a higher 
percentage would then be labeled as bad. In practice a value 
slightly higher than this max value was then chosen as the 
percentage threshold for damage detection. This slight 
increase in percentage threshold value was selected to 
ensure that no training data was flagged as bad. The CDFs 
generated from every test file were then evaluated at the R2 
per sample threshold. Figure 7 shows the CDF of a typical 
test data file. The percentage of data points contained in all 
bins less than or equal to the per sample threshold was then 
compared to the percentage threshold obtained from the 
training data. If the percentage of test data points contained 
in those bins were greater than or equal than that threshold, 
the file was marked as bad.  

Using this line of reasoning to label some files as the bad 
sensors class, we are able to extend the previously discussed 
discriminant analysis to the shear data.   

 
Figure 9-Discriminant value comparison for each test file in 

Paired Data Set 

However there is still some difficulty in using this approach 
for sensors at different heights. The problem is that the 
percentage difference between anemometers will increase or 
decrease with different height differences. To help alleviate 
this issue, all the training data was divided into height-pair 
combinations (such as 49 & 10 meters, 35 & 10 meters, etc), 
Weibull parameters were generated for the percentage 
difference between the respective sensors, and the 
discriminant function method was employed on these 
parameters using the files labeled earlier as the 'bad set'.  
This allowed us to compare each sensor to every other 
sensor in a data set. If a sensor goes bad, ostensibly this will 
show up in the Weibull parameters generated by the 
comparison of that sensor with all other sensor in the data 
set. 

2.5. Discriminant Analysis Summary 

In this section, the discriminant analysis employed in this 
paper will be briefly summarized.  The analysis relies on 
creating discriminant functions for each desired 
classification (‘good’ and ‘bad’). The equations to create 
this function are given in equations (1)-(4). The necessary 
parameters are the feature vector, in this case, the scale and 
shape parameters derived from the Weibull distribution of 
the percentage difference between two sensors under test.  
The resulting feature vector is of dimension 2 x 1. By 
examining all the feature vectors for both groups of labeled 
data yields two mean vector of size 2 x 1 and two 
covariance matrices of size 2 x 2, one for each class. In 
order to obtain the data necessary for each discriminant 
function, the ‘training data’ provided by the competition 
was used as good data and a variety of methods outlined in 
the previous two sections were used to obtain an estimate of 
some initial good data. Once the feature vectors, mean 
vectors, and covariance matrices were obtained for both 
classes, the parameters of a Weibull distribution describing 
the difference between mean wind speeds of sensors at 
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different heights were estimated. The resulting shape and 
scale parameters were used as the vector x in both 
discriminant functions, good sensors and bad sensors. The 
file was labeled as either good or bad based on which 
discriminant function produces the highest value. This 
process was repeated for every file under consideration. 

After the discriminant functions have been created, they are 
evaluated at each file and the file is classified into the group 
whose discriminant function has the higher reported value.  
In our analysis, using the 'initial guess' presented in the 
previous two sections, we flagged 25% of the files as bad 
from the 'paired' data set and 58% of the files from the 
'shear' data set. Figure 9 illustrates the outputs of the 
discriminant functions for each test file in the paired data.  
The function with the higher value will correspond to the 
minimum error rate classification of incorrect classification. 

3. CONCLUSION 

Building on the previous work of others in identifying that a 
Weibull distribution can statistically describe the differences 
between paired anemometers over short distances, we have 
proposed a conceptually simple method using discriminant 
functions for analytically determining classification 
thresholds. There are several complicating parameters like 
not having paired data at all heights and consistent heights, 
that are most likely artifacts of the competition and not 
indicative of real world monitoring. In addition, a real world 
application would generally also provide environmental 
information such as stability & surface roughness, along 
with the Monin-Obukhov stability parameter, which would 
enable the more accurate 'logarithmic wind profile law to be 
used. The performance of the data was improved by 
preprocessing to remove obviously faulty data and there was 
a rough attempt at estimating the probability of a sensor 
being bad. There are several ways in which this method 
could be improved in the future. One improvement could be 
had if the statistics between all sensors on a tower were 
modeled and used as features. This would allow for a more 
complete and robust description of an installation which in 
turn would allow for more powerful classification 
techniques to be applied. 

Though the discriminant function yields the minimum-error-
rate classification, it is highly sensitive to variations in the 
intial guess. We noticed that varying the files in the initial 
guess can dramatically alter the classifications. Therefore, 
finding the best method to obtain the initial guess of the bad 
files is critical. 

Also, a better method for accommodating the variation in 
wind speed differences between anemometers at the same 
height with wind direction would offer some improvement.  
A simple method of doing so would be to find a function 
that characterizes the plot of wind speed differences versus 
wind direction as presented earlier and subtract the effect 
from the data. To accomplish this, it would be necessary to 
know the precise orientation of the anemometers ahead of 
time as this is not always possible to deduce from the plot of 
the data (sometimes wind may be from a small number of 
directions for the duration of a test and plot such as Figure 2 
cannot be easily made). Another possible improvement 
would be if additional data such as surface roughness, and 
atmospheric stability information is available, then the log 
wind profile equation can be used in which should greatly 
improve the predictive ability for the shear data set. 
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