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ABSTRACT 

Gearbox is a very complex mechanical system that can 
generate vibrations from its various elements such as 
gears, shafts, and bearings. Transmission path effect, 
signal coupling, and noise contamination can further 
induce difficulties to the development of diagnostic system 
for a gearbox. This paper introduces a novel information 
reconstruction approach to clustering and diagnosis of 
gearbox signals in varying operating conditions. First, 
vibration signal is transformed from time domain to 
frequency domain with Fast Fourier Transform (FFT). 
Then, reconstruction filters are employed to sift the 
frequency components in FFT spectrum to retain the 
information of interest. Features are further extracted to 
calculate the coefficients of the reconstructed energy 
expression. Then, correlation analysis (CA) and distance 
measurement (DM) techniques are utilized to cluster 
signals under diverse shaft speeds and loads. Finally, 
energy coefficients are used as health indicators for the 
purpose of fault diagnosis of the rotating elements in the 
gearbox. The proposed method was used to solve the 
gearbox problem of the 2009 PHM Conference Data 
Analysis Competition and won with the best score in both 
professional and student categories.

*
 

 

1. INTRODUCTION 

Gearbox is one of the most widespread and crucial rotating 
mechanical systems in modern industry. It provides a 
speed-torque conversion from a higher speed motor to a 
slower but more forceful output or vice-versa. A gearbox 
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usually consists of rotating elements such as gears, 
shafts, and bearings and static elements such as box 
body and bearing caps. During operation, a gearbox 
system can suffer the following: gear failures such 
as wear, scoring, interference, surface fatigue, 
plastic flow and fracture; bearing failures such as 
wear, scoring, surface fatigue and brinelling; and 
shaft failures such as fatigue cracking and overload 
(Forrester 1996). All these defects can worsen the 
operating condition and excite excess vibration, and 
potentially cause major unexpected breakdowns and 
safety issues. Condition monitoring and fault 
prognostics of gearbox system have been used for 
many applications to some degree of success (Peng 
and Chu 2004, Suh et al. 1999, Wang et al. 2007, 
Byington et al. 2004). The major challenge is to 
effectively and accurately identify abnormal patterns 
early with a sound estimation of the remaining 
useful life (RUL).  

The 2009 PHM Conference Data Analysis 
Competition is focused on the detection and 
magnitude estimation of mechanical faults from a 
generic gearbox using accelerometer data and 
information about bearing geometry. Participants 
are scored based on their ability to correctly identify 
fault type, location, magnitude and damage in the 
gear system. Data were collected at 30, 35, 40, 45 
and 50 Hz shaft speed while being subjected to 
either high or low loading. Additionally, repeated 
runs are included in the data, although the run time 
and load were not sufficient to induce significant 
fault progression. There are a total of 560 vibration 
data files to be classified and diagnosed. Details of 
the Data Analysis Competition are provided on the 
website http://www.phmsociety.org/competition/09. 

This paper introduces a novel information 
reconstruction approach for clustering and diagnosis 
of gearbox signals in varying operating conditions. 

mailto:wfjridc@gmail.com
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Fig. 1 is a schematic diagram of the proposed approach. 
First, vibration signal is transformed from time domain to 
frequency domain with Fast Fourier Transform (FFT). 
Second, reconstruction filters are employed to sift the 
frequency components in FFT spectrum to retain the 
information of interest and eventually obtain the 
reconstructed FFT spectrum. Features are further extracted 
from the modified spectrum to calculate the coefficients of 
the reconstructed energy expression (energy fitting model). 
Then, correlation analysis (CA) and distance measurement 
(DM) techniques are used for clustering signals under 
diverse shaft speeds and loads. Finally, energy coefficients 
are used as health indicators for fault diagnosis of the 
rotating elements in the gearbox. Basically, this approach 
is a hybrid of data-driven and model-driven schemes. It 
can be applied as a systematic method for gearbox health 
assessment system. 

Time Series

FFT Spectrum

Reconstructed
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Fitting Model of 
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Signal Clustering
Holo-coefficients Radar Chart 

Based Fault Diagnosis

14 Cases

Diagnosis Results

  

 
Fig.1. Overview of information reconstruction method 

This paper is organized as follows. In Sec. 2, the scheme 
of reconstructing FFT spectrum is introduced. The feature 
extraction and reconstructed energy are presented in Sec. 
3. Sec. 4 shows the signal clustering process and result of 
accelerometer data. Sec. 5 introduces holo-coefficients 
map for gearbox fault diagnosis. The generalization and 
improvement of the information reconstruction method is 
discussed in Sec. 6. Finally, conclusions are presented in 
Sec. 7. 

 

2. RECONSTRUCTED FFT SPECTRUM 

To gain further understanding of the gearbox signals, 
many tools have been developed. These tools consist of 
time synchronous average (Dempsey 2004) and 
autoregressive moving average (Wang and Wong 2002) 

model for time domain analysis; FFT (Lin et al. 
1993), power spectrum (Baydar and Ball 2000), and 
cepstrum (Badaoui et al. 2001) for frequency 
domain analysis; short-time Fourier transform 
(Pinnegar and Mansinha 2003), Wigner-Ville 
distribution (Baydar and Ball 2000), wavelet 
transform (Sung et al. 2000), and Hilbert-Huang 
Transform (Huang et al. 1998) for time-frequency 
analysis, among others. For the 2009 PHM 
competition case, vibration data were collected 
using accelerometers mounted on both the input and 
output shaft retaining plates. The signal can be 
described as a complicated measurement with a 
wide-range energy distribution. However, only some 
parts of signal are related to specific machine 
conditions. The main idea of spectrum analysis is to 
either look at the whole spectrum or look closely at 
certain frequency components of interest and then 
extract features from the signal. 

To remove or reduce noise and effects from other 
unexpected sources and further enhance signal 
components of interest, a reconstruction approach is 
used to filter and assemble the frequency 
components to reconstruct signal without loss of 
information of interest. The scheme of 
reconstruction method is illustrated in Fig. 2. Each 
signal is transformed to FFT spectrum. Then, 
eighteen band-pass filters are applied to select 
specific frequency bands within the signal. Finally, 
all the eighteen frequency segments are reassembled 
together to reconstruct a new signal. The functions 
of these eighteen band-pass filters are listed in Table 
1, which shows the criteria for defining these filters. 
In this table, frequency components are obtained by 
calculating corresponding vibration characteristic 
frequencies of shafts, gears and bearings. Frequency 
order is the ratio of the characteristic frequency to 
the shaft rotating frequency. 

For shaft, defects such as unbalance and bend will 
excite harmonic frequency components of shaft 
rotating frequency. For gear, characteristic 
frequencies are gear meshing frequency (GMF) and 
its side band frequencies. GMF is equal to the 
number of teeth multiplied by the rotational 
frequency of the gear. It is the periodic signal at the 
tooth-meshing rate due to deviations from the ideal 
tooth profile. Side band signals are induced by 
amplitude modulation effects due to variations in 
tooth loading; frequency modulation effects due to 
rotational speed fluctuations and non-uniform tooth 
spacing; and additive impulses associated with tooth 
faults. For bearing, a defect on the inner or outer 
race will cause an impulse each time a rolling 
element contacts the defect. For an inner race defect 
this occurs at the inner race ball pass frequency 
(BPFI), and for an outer race defect this occurs at 
outer race ball pass frequency (BPFO). A defect on 
rolling element will cause an impulse each time the 
defect surface contacts the inner or outer races, 
which will excite the ball spin frequency (BSF). 
These characteristic frequencies can be expressed 
as: 
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where N is the number of rolling elements, fo is the 
rotational frequency of the outer race, fi is the rotational 
frequency of the inner race, d is the diameter of the rolling 
elements, D is the pitch circle diameter, α is the contact 
angle. 

Table 2 lists the corresponding meaning of these eighteen 
filters and shows why these filters are defined. The i-X 
GMF means i-th harmonic frequency of gear meshing 
frequency. To cite an example, Fig. 3 shows the FFT 
spectrum of input side signal of File-29 and Fig. 4 shows 
its reconstructed FFT spectrum. 
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Fig.2. FFT spectrum reconstruction 

Table 1. Functions of reconstruction filters 

Filter 01 Retaining 01X order component 

Filter 02 Retaining 02X order component 

Filter 03 Retaining 03X order component 

Filter 04 Retaining 04X order component 

Filter 05 Retaining 05X order component 

Filter 06 Retaining 45X order component 

Filter 07 Retaining 06X-10X order component 

Filter 08 Retaining 14X-18X order component 

Filter 09 Retaining 22X-26X order component 

Filter 10 Retaining 30X-34X order component 

Filter 11 Retaining 38X-42X order component 

Filter 12 Retaining 46X-50X order component 

Filter 13 Retaining 54X-58X order component 

Filter 14 Retaining 62X-66X order component 

Filter 15 Retaining 78X-82X order component 

Filter 16 Retaining 94X-98X order component 

Filter 17 Retaining 110X-114X order component 

Filter 18 Retaining 126X-130X order component 

 

Table 2. Corresponding meaning of filter functions 

Filter 01 
Characteristic frequency component of 

input shaft unbalance 

Filter 02 
Characteristic frequency component of 

bent input shaft 

Filter 03 
Characteristic frequency component of 

outer race defect of input-shaft bearing 

Filter 04 
Characteristic frequency component of 

ball defect of input-shaft bearing 

Filter 05 
Characteristic frequency component of 

inner race defect of input-shaft bearing 

Filter 06 
Natural frequency of rotating element 

or gear ghost frequency component 

Filter 07 Output-shaft helical 1X GMF 

Filter 08 

Input-shaft helical 1X GMF 

Output-shaft helical 2X GMF 

Output-shaft spur 1X GMF 

Filter 09 Output-shaft helical 3X GMF 

Filter 10 

Input-shaft helical 2X GMF 

Output-shaft helical 4X GMF 

Input-shaft spur 1X GMF 

Output-shaft spur 2X GMF 

Filter 11 Output-shaft helical 5X GMF 

Filter 12 

Input-shaft helical 3X GMF 

Output-shaft helical 6X GMF 

Output-shaft spur 3X GMF 

Filter 13 Output-shaft helical 7X GMF 

Filter 14 

Input-shaft helical 4X GMF 

Output-shaft helical 8X GMF 

Input-shaft spur 2X GMF  

Output-shaft spur 4X GMF 

Filter 15 
Input-shaft helical 5X GMF 

Output-shaft spur 5X GMF 

Filter 16 

Input-shaft helical 6X GMF 

Input-shaft spur 3X GMF  

Output-shaft spur 6X GMF 

Filter 17 
Input-shaft helical 7X GMF 

Output-shaft spur 7X GMF 

Filter 18 

Input-shaft helical 8X GMF 

Input-shaft spur 4X GMF  

Output-shaft spur 8X GMF 
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Fig.3. FFT spectrum of File-29 
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Fig.4. Reconstructed FFT spectrum of File-29 

 

3. FEATURE EXTRACTION AND 

RECONSTRUCTED ENERGY 

Based on the reconstructed FFT spectrum, eighteen 
features are extracted and they serve as coefficients in the 
reconstructed energy model. The reconstructed energy can 
be expressed as: 
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(2) 

 
where fE is the total energy index of input and output side 
signals, fEI is the energy index of input side signal, fEO is 
the energy index of output side signal, EImax and EOmax are 
the maximum energy components of input and output side 
signals, EIall and EOall are the full energy values of input 
and output side signals, α1 to α6 are derived by dividing the 
energy of the first six band signals of input side signal by 
EImax, β1 to β6 results from dividing energy of first six band 
signals of output side signal by EOmax, α7 to α18 are 
computed when energy of last twelve band signals of input 
side signal is divided by EIall , and finally, β7 to β18 are 
determined by dividing the energy of last twelve band 
signals of output side signal by EOall. 

In the reconstructed energy expression, energy coefficients 
are selected to have certain classification power. The basic 
idea is to identify and further classify the data with similar 
attributes to a specific group. For example, α1 is supposed 

to classify the data either to unbalance group or 
normal group. Moreover, energy coefficients are 
also supposed to be comprehensible for user or have 
physical meaning. This is necessary whenever the 
classified pattern is to be used for supporting a 
decision to be made. If the classified pattern is a 
group without explanation, the user may not trust it. 
In this paper, knowledge comprehensibility can be 
achieved by using high-level knowledge 
representations described in the previous section. 

 

4. SIGNAL CLUSTERING 

Given a set of data items, partitioning this set into 
subsets, such that items with similar characteristics 
or features are grouped together, is the general idea 
of signal clustering (Goebel and Gruenwald 1999). 
A natural way of signal clustering is based on 
certain similarity measure or distance measure 
between two signals. In this section, CA and DM on 
energy coefficients are introduced and evaluated for 
clustering signals under diverse shaft speeds and 
loads. Vector of energy coefficients can be 
constructed as 
 

1 18 1 18[ , ..., , , ..., ]T

EC           (3) 

 
Then, CA on two signals is defined as 
 

( ) / ( )Ei Ej Ei EjCA C C C C    (4) 

 
where · means dot product, |·| means the largest 
singular value of a vector. The result of CA ranges 
between zero and one, with higher CA signifying a 
higher correlation. DM on two signals is 
 

Ei EjDM C C            (5) 

 
where ||·|| is the Euclidean distance, with lower DM 
signifying a higher similarity.  

4.1 Determination of Repeated Runs 

Using the tachometer signal, rotating speed can be 
calculated as shown in Fig. 5. There are five distinct 
groups corresponding to the 5 shaft speeds and each 
group contains exactly 112 data points. Repeated 
runs identification was then applied to each speed 
regime. Consider 50 Hz speed regime, CA for File-
157 on these 112 files is illustrated in Fig. 6, while 
DM for the same scenario is shown in Fig. 7. CA 
shows that File-183, File-227 and File-498 have the 
largest correlation value to File-157 and they can be 
considered as its repeated runs. DM also shows that 
these three files have the smallest distance value to 
File-157 and confirms that they are its repeated runs. 
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Fig.5. Input shaft speeds 
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Fig.6. CA for File-157 
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Fig.7. DM for File-157 

4.2 Identification of Diverse Loading Runs  

After identifying the 4 repeated runs, the 112 files in 50Hz 

regime are now clustered into 28 groups. CA for File-157 

on 28 files from these 28 groups, one file from each group, 

is illustrated in Fig. 8. DM for File-157 on these 28 files is 

illustrated in Fig. 9. CA shows that File-250 has the largest 

correlation value to File-157 and they are from the same 

pattern. DM shows that File-250 has the smallest distance 

value to File-157 and they are from the same pattern, one 

with high load and the other with low load. After 

identifying the high and low loading runs, 112 files in each 

speed regime are reduced into 14 groups. 
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Fig.8. CA for File-157 
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Fig.9. DM for File-157 

4.3 Identification of Diverse-Speed Runs  

At this point, each speed regime has 14 groups 
(replications and loading, considered). This section 
will then describe how the 14 unique patterns are 
identified across the 5 speed regimes. Consider File 
157 (with File-250 as its load pair) in 50Hz regime, 
its CA and DM with 28 files (one from each of the 
28 groups in the same speed regime after identifying 
replications) in 45Hz regime, are illustrated in Fig. 
10 and 11, respectively. Both figures show that File-
157 and File-55 (File-62 was its load pair as 
determined in a previous step) share the same 
pattern. By doing the same process for the other 3 
speed regimes, it was found that File-59, File-69 in 
30Hz, File-34, File-88 in 35Hz, File-56, File-213 in 
40Hz, File-55, File-62 in 45Hz, and, File-157, File-
250 in 50Hz can be clustered as one pattern (Pattern 
A). 
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Fig.10. CA for File-157 
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Fig.11. DM for File-157 

 

5. HOLO-COEFFICIENTS MAP/RADAR CHART 

AND FAULT DIAGNOSIS 

The fault diagnosis of rotating elements in the gearbox is 
performed using energy coefficients as health indicators. A 
holo-coefficients map comprises of all the energy 
coefficients. In the map (e.g. Fig. 12 and Fig. 14), the 
contribution rate of each coefficient can be revealed very 
clearly along with operating conditions. A more advanced 
format of holo-coefficients map is holo-coefficients radar 
chart. The multivariate data in holo-coefficients map are 
displayed in holo-coefficients radar chart starting from the 
same point and in different equi-angular spokes, with each 
spoke representing one of the variables. The data length of 
a spoke is proportional to the magnitude of the variable for 
the data point. In the chart (e.g. Fig. 13 and Fig. 15), radial 
1 to 18 correspond to α1 to α18, and radial 19 to 36 
correspond to β1 to β18. The map and chart can be treated 
as qualitative tools for fault diagnosis. The rules that 
authors used for qualitative diagnosis are: 1) energy 
coefficient of a defect should be higher than normal case; 
the threshold of faulty case depends highly on gearbox set 
and its dynamic characteristics; usually an energy 
coefficient larger than 0.4 should trigger a warning, 2) 
bearing defect may excite lower energy coefficient 
compared to shaft and gear defect; 3) a high energy 
coefficient in hard working condition such as high loading 
and high speed is more reliable for fault detection. 
Moreover, holo-coefficients map can be updated for 
quantitative diagnosis. This will be further discussed in 
next section for generalization of the proposed approach. 

Fig. 12 shows the holo-coefficients map of files of Pattern 
A. Fig. 13 is the transformed radar chart format of Fig. 12. 
From the figure, input shaft unbalance (radials 1 and 19) 
and bearing outer defect at input shaft output side (radial 
21) are diagnosed. The unbalance excites 1X frequency 
component as measured from the input side signal and this 
component is also distinct in output side signal due to the 
transmission effect of the rigid gearbox housing. The 
contribution rate of coefficient 3 in 40 Hz is also 
considerable. However, with the increase in speed, its 
contribution decreases. Fig. 14 shows the holo-coefficients 
map of Pattern B (File-60 in 30Hz, File-19 in 35Hz, File-
185 in 40Hz, File-36 in 45Hz, and File-258 in 50Hz). Fig. 
15 is the transformed radar chart format of Fig. 14. It is 

determined that this pattern contains gear error 
defect at idler shaft 2 location (radials 8 and 26). 
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Fig.12. Holo-coefficients map of pattern A 
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Fig.13. Holo-coefficients radar chart of pattern A 
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Fig.14. Holo-coefficients map of pattern B 
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Fig.15. Holo-coefficients radar chart of pattern B 

 

6. GENERALIZATION AND IMPROVEMENT OF 

INFORMATION RECONSTRUCTION 

METHOD 

The information selection and feature extraction are the 
crucial steps of the proposed information reconstruction 
method. The effect of feature selection are (1) to improve 
classification and diagnosis performance; (2) to visualize 
the data for model construction; (3) to reduce 
dimensionality and (4) to remove noise. Improper 
selection of information of interest and poor extraction of 
features can lead to under-fitting and over-fitting issues 
during model creation of the PHM activity of a gearbox 
system. In developing the energy expression, there is a risk 
of generating too many energy coefficients which is called 
over-fitting. Over-fitting will decrease the efficiency and 
accuracy of the classification since irrelevant attributes can 
confuse the data mining algorithm. On the contrary, under-
fitting means energy coefficients are not enough to support 
the decision making process. 

For over-fitting, it is desirable to have a procedure to prune 
the ensemble of energy coefficients while keeping the 
expected classification performance and avoiding the risks 
in feature selection. The method for selection of energy 
coefficients that was discussed in this paper relied on 
expert knowledge which is user-driven and domain-
dependent. Had the data files been labeled a priori, 
original files can then be taken as training data, therefore, 
objective methods, which are data-driven and domain-
independent, can be employed to optimize the energy 
coefficients. The principal component analysis (PCA) can 
be used to prune the energy coefficients. Because of its 
ability to discriminate directions with the largest variance 
in a data set, it is suitable to use PCA for identifying the 
most representative features. One can first classify data 
files by pattern; then, apply PCA to feature vectors of data 
files in each pattern to find the most representative features 
for the corresponding pattern; finally, assemble retained 
features from each pattern to obtain the final feature set. 
Fisher criterion can be another approach for pruning the 
energy coefficients. Suppose that we have a set of features 

in the pattern labeled ω1 and another set of features 
in the pattern labeled ω2. Fisher criterion method 
actually tries to find the feature set to maximize the 
distance between two patterns and minimize the 
deviation within each pattern. A Fisher criterion 
score can be expressed as: 
 

1 2

2 2

1 2

( ) ( )

( ) ( )

i i
i

i i

m m
SF

 

   





 (6) 

 
where 1( )im   and 2( )im   are the mean value for 
the i-th feature in ω1 and ω2 pattern, 

2

1( )i   and 
2

2( )i  are the standard deviation. By deleting 
features with small Fisher criterion score, one can 
exclude irrelevant features from original feature set. 
Moreover, other advanced feature selection methods 
such as support vector machine (SVM) and genetic 
algorithm (GA) based approaches can also be 
applied (Bradley and Mangasarian 1998, Yang and 
Honavar 1997). 

For under-fitting, more efficient signal processing 
methods are needed to extract more distinguishable 
features or more information about the gearbox set 
is needed to define specified attributes such as 
natural frequency of gears and bearings. In the 
current energy expression, the weighting 
coefficients reflecting the relative importance of 
energy coefficients are same. If there is evidence 
proving one energy coefficient is more 
distinguishable than others, the energy expression 
can be improved further to have more efficient 
performance and a more accurate diagnosis. Finally, 
holo-coefficients radar chart is capable for 
quantitative diagnosis. However, in order to achieve 
this goal, there are three sub-tasks need to be 
considered. First, experiment should be carried out 
in detail to record the relationship between single 
energy coefficient and single defect. Second, 
experiment should be carried out in detail to record 
the relationship between whole energy coefficients 
and multi-defects. Third, a model need to be 
established to represent the relationship between 
energy coefficients and defects, and then a 
quantitative reference system and thresholds for 
quantitative diagnosis can be obtained. 

 

7. CONCLUSION 

This paper addressed the information reconstruction 
method for solving the challenging problem of the 
2009 PHM Conference Data Analysis Competition. 
With this method, raw data can be represented by a 
reconstructed energy model. Then, based on the 
energy coefficient of this model, signal clustering 
can be performed for determination of repeated 
runs, identification of diverse loading runs, and 
identification of diverse speed runs. Thus, 560 
vibration data files can be classified into 14 patterns. 
For fault diagnosis of rotating elements in the 
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gearbox, holo-coefficients map and radar chart are used. In 
the map and chart, the contribution rate of each energy 
coefficient can be revealed very clearly along with 
operating conditions. Finally, in order to further apply the 
information reconstruction method to other gearbox sets 
besides the one used for PHM competition and to further 
improve the current approach, four issues are discussed as 
1) over-fitting issue, 2) under-fitting issue, 3) weighting 
coefficient, and 4) quantitative diagnosis. The proposed 
information reconstruction method can further be applied 
to the gearbox set working in varying working condition 
such as helicopter gearbox and wind turbine gearbox for 
signal clustering and fault diagnosis. 

For development of gearbox diagnostic system, extraction 
of features that are less sensitive or not sensitive to 
working conditions is critical to accuracy; simulation of 
the problem-solving process of experts to get diagnosis 
results with computer is critical to efficiency. In the future, 
solving problems without interference of experts or 
performing computer-aided pre-diagnosis before resorting 
to experts could be expected with the further development 
of intelligent diagnostic systems. 
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