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ABSTRACT 

A systematic methodology for gearbox health 

assessment and fault classification is developed and 

evaluated for 560 data sets of gearbox vibration data 

provided by the Prognostics and Health Management 

Society for the 2009 data challenge competition.  A 

comprehensive set of signal processing and feature 

extraction methods are used to extract over 200 

features, including features extracted from the raw time 

signal, time synchronous signal, wavelet decomposition 

signal, frequency domain spectrum, envelope spectrum, 

among others.  A regime segmentation approach using 

the tachometer signal, a spectrum similarity metric, and 

gear mesh frequency peak information are used to 

segment the data by gear type, input shaft speed, and 

braking torque load.  A health assessment method that 

finds the minimum feature vector sum in each regime is 

used to classify and find the 80 baseline healthy data 

sets.  A fault diagnosis method based on a distance 

calculation from normal along with specific features 

correlated to different fault signatures is used to 

diagnosis specific faults.  The fault diagnosis method is 

evaluated for the diagnosis of a gear tooth breakage; 

input shaft imbalance, bent shaft, bearing inner race 

defect, and bad key, and the method could be further 

extended for other faults as long as a set of features can 

be correlated with a known fault signature.  Future 

work looks to further refine the distance calculation 

algorithm for fault diagnosis, as well as further evaluate 

other signal processing method such as the empirical 

mode decomposition to see if an improved set of 

features can be used to improve the fault diagnosis 

accuracy.
*
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1. INTRODUCTION   

Diagnosis and health assessment of rotary machinery 

using vibration signals from the machine has been a 

domain of interest for many years.  Prior to a total 

failure, degradation and incipient level of damage in 

components of the machinery can demonstrate 

behavioral features hidden within the vibration signals. 

In practice, a machine with no faults will have a 

vibration signature, “normal” signature, based on its 

system dynamics and forces acting on the system. 

Different mechanical faults in different components 

will display different vibration signatures that can be 

differentiated from the “normal” signature, with the 

utilization of the proper signal processing techniques. 

One of the main challenges in diagnosis and health 

assessment of rotary machinery is the potentiality of the 

machine or equipment to operate in a multitude of 

regimes, and thus their vibration behavior will be 

different in each regime. Another, challenge is that the 

“normal” vibration signature from every operating 

regime might not be available for prior training.  This 

paper proposes a multi-regime health assessment and 

fault-diagnosis systematic methodology for gearbox 

systems, which utilizes different techniques for signal 

processing, regime segmentation, baseline “normal” 

signature detection and fault-diagnosis.   This 

methodology of developing a fault classifier without 

baseline data and for a system that operates under 

multiple regimes and loading conditions, although 

applied to a gearbox for this application; could be 

extended to other applications with proper adjustment 

of the selected features and regime identification 

method. 

The 2009 Prognostics and Health Management Data 

Challenge (PHM 2009 Data Challenge), focused on 

developing and applying techniques in the area of fault 

classification; data collected from a generic gearbox 

was used to facilitate the data sets for the challenge.  A 
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schematic of the gearbox used for data collection is 

shown in Figure 1, note that the measured signals 

consisted of two accelerometer signals along with a 

tachometer signal.  The gearbox contains several 

mechanical elements, including three shafts, 4 gears, 

and 6 bearings; the overall objective of the data 

challenge was to specify the condition of each of the 

mechanical components and specify the particular fault 

if it was not in the healthy state.   For example, a 

particular bearing could be in the healthy state, or have 

an inner race, outer race, or ball defect.  For each data 

set, a 45 line diagnostic output was to be specified that 

detailed the condition of each mechanical component 

based on the available vibration and speed signals.   

 
Figure 1: Schematic of Gearbox Used in PHM 2009 

Challenge Data (PHM 2009 Data Challenge) 

 

The data provided consisted of 560 data sets, in which 

the gearbox was tested under 5 different speeds, 2 

different loads, and two different gear types.  The 560 

data sets consisted of data in which the gearbox was 

tested under different operating conditions as well as 

under different conditions of the mechanical 

components.   No training data set was provided for the 

data challenge and fault detection was to be determined 

by analyzing the available vibration and speed signals 

and basing the diagnosis on the signature of the signal 

compared with the known fault signatures in the 

literature.   

A picture of the experimental gearbox tested and used 

for data collection is shown in Figure 2.  In this 

particular instance, the gearbox is shown with helical 

gears; however a set of spur gears was also tested and 

the spur gears consisted of twice the number of teeth of 

the helical gears. 

 
Figure 2: Inside View of Gearbox Used for Data 

Collection and Testing (PHM 2009 Data Challenge) 

2. OVERALL METHODOLOGY TO GEARBOX 

FAULT DIAGNOSIS 

The overall approach developed for gearbox fault 

diagnosis consists of several key steps in which the 

final output is specific diagnostic information for each 

mechanical component in the gearbox.  For this 

particular application and data set, the inputs consisted 

of two vibration signals and a tachometer signal; the 

overall methodology shown in Figure 3 would require 

similar inputs since the fault diagnosis method is based 

on the vibration signals.   

The initial key step requires the use of several signal 

processing and feature extraction methods to extract 

relevant information from the input vibration signals.  

By transforming the signal into frequency or time-

frequency domains, relevant information that is 

correlated with particular gearbox faults can be 

extracted.  This necessitates the use of several signal 

processing and feature extraction methods, since 

depending on the nature of the fault would indicate 

which signal processing method to use.   

Regime segmentation allows for a fair comparison 

between the extracted feature sets; since the influence 

induced by operating the gearbox at different speeds or 

loads is reduced.  By assessing the health and 

diagnosing the condition of each gearbox mechanical 

component for each regime; the influence of operating 

conditions is held constant and a change in particular 

features is only due to degradation of a particular 

component.   

Health assessment consisted of using a specific set of 

features that are well correlated with overall gearbox 

health and using this feature set to assess the overall 

gearbox condition.   For this particular application, a 

health assessment algorithm is used to find the data set 

with the minimum feature vector sum in each regime; 

and this is used to determine the baseline data sets. 

Fault classification is the final step in the gearbox fault 

diagnosis methodology; the fault classification is 
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triggered after health assessment, since only if the 

gearbox overall health has degraded does it necessitate 

further diagnosis to determine the particular problem.  

For each particular fault, features correlated with this 

failure signature are used to calculate the distance from 

each data set to the baseline data set in each regime, 

and this is used to calculate a probability of each fault 

based on the distance value from normal.  The final 

diagnosis is dependent on inputs from the feature 

extraction step, regime segmentation, and health 

assessment calculation; this places much importance on 

the prior steps before the final diagnosis.    

 
Figure 3: Flow Diagram for Gearbox Fault Diagnosis 

3. SIGNAL PROCESSING AND FEATURE 

EXTRACTION 

The health assessment and fault classification 

algorithms require the appropriate features as inputs in 

order to make the right assessment of the condition of 

the gearbox components as well as the level of damage.  

As described in the review by Samuel et al.  (2005), 

this places much importance on extracting and selecting 

the most suitable set of features that are correlated to 

gearbox fault signatures as well as fault severity.   

The signal processing and feature extraction methods 

used to extract a multitude of condition indicators from 

the vibration signals are presented; the health 

assessment and fault diagnosis section provide the 

details of the particular subset of features and algorithm 

used for assessing the gearbox health and providing the 

fault diagnosis information. 

3.1 Time Domain Feature Extraction 

Features from the raw time signal can be used to 

provide an overall understanding of the vibration level 

exhibited by the monitored gearbox as well as the 

distribution of the vibration data.  The time domain 

feature values can be compared to a known baseline 

and this provides some level of assessment of gearbox 

condition but limited ability to diagnosis the particular 

fault.  The root mean square value, defined for a 

sampled signal is given in Eq. (1) and provides an 

overall indicator of the vibration energy. 
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As mentioned by Decker et al. (2003), potential time 

domain features include the peak to peak vibration 

level, crest factor, and statistical measures such as 

kurtosis, among others; however for the development 

of this particular method, only the RMS value provided 

a useful feature from the raw vibration time signal.   

The RMS value can only provide insight that a 

particular fault is occurring but insight on the exact 

gearbox component that has damage or what failure 

mode is occurring cannot be inferred only using this 

indicator.  The RMS feature can be used in an overall 

health assessment algorithm along with other potential 

features; however it has limited used for providing 

specific diagnosis for mechanical systems comprised of 

several components such as a gearbox. 

An example of the level of insight the RMS feature can 

provide is shown in Figure 4, in which the RMS value 

is 2.6 times higher for the output vibration signal for a 

gearbox with a gear in the idler shaft having a broken 

tooth compared to a healthy gearbox operating under 

the same load and speed settings.   

 
Figure 4: Vibration Time Signal for Healthy Gearbox 

and Gearbox with a Broken Gear Tooth 

3.2 Time Synchronous Average Time Signal 

By processing the tachometer signal, the vibration 

signal can be segmented into blocks for the duration of 
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one revolution of the input, output or idler shaft, and 

averaging the signal for each block of data can 

highlight certain phenomena that are synchronous with 

the shaft rotation.  Keller et al. (2003) mentioned 

several signal processing techniques for helicopter 

gearbox vibration analysis including further processing 

of the time synchronous signal by taking the Fast 

Fourier Transform and extracting peak information 

from particular orders of interest.  However, there is 

still relevant information that can be extracted from the 

synchronous time signal including gear tooth problems 

related to impacts.   

Impacts that occur repetitively for each shaft rotating 

could be an indication of a particular fault; for example 

a broken tooth would generate an impulsive impact 

once per revolution of its respective shaft and this can 

be more easily detected by analyzing the time 

synchronous average signal.  As mentioned by Choy et 

al. (2004), the frequency spectrum obtained by 

performing the FFT on the time synchronous signal 

might not provide insight into the impact caused by this 

particular fault and the time or time-frequency domain 

is more appropriate way to analyze this particular 

signal.  This is due to a pure impulse in the time 

domain containing broadband energy in the frequency 

domain.  An example time synchronous signal is shown 

in Figure 5 for a data set that contains a broken gear 

tooth on an idler shaft gear, this particular fault has a 

clear signature due to the a periodic impact occurring. 

 
Figure 5: Time Synchronous Vibration Time Signal for Gearbox with a Gear that has a Broken Tooth 

 

Both the peak to peak vibration and the energy operator 

feature can be used to process the synchronous time 

signal in an automated feature extraction routine to 

quantify this impact.  The energy operator (EO) 

indicator used by Ma (1995), is a normalized kurtosis 

value defined by Eq. (2), where N is the number of data 

points in a sampled signal s. 
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For the particular example shown in Figure 5, this 

particular gearbox with a broken gear tooth had an 

energy operator value that is 3 times higher than the 

baseline data set case for the output accelerometer 

signal.  The energy operator in the time synchronous 

average signal is able to characterize this type of impact 

due to a gear tooth breakage.     The impact could also 

be associated with other gearbox faults related to 

bearings, bent shaft, or bad key; however quantifying 

the impact is important and more than one feature can 

be used to isolate a particular fault. 

 

3.3 Synchronous Average Vibration Spectrum 

As discussed by Grabill et al. (2001), the Fourier 

Transform of the time synchronous averaged signal can 

reveal periodic occurrences that are related to a 

particular shaft of interest; information related to shaft 
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problems such as imbalance, as well as gear problems 

related to sidebands can be analyzed using the 

frequency domain spectrum.  Figure 6 shows the 

frequency domain spectrum for a healthy gearbox and a 

gearbox with input shaft imbalance.   

  
Figure 6: Frequency Spectrum for Healthy Gearbox and 

Gearbox with Imbalance Input Shaft 

 

The frequency spectrum plot shows a much higher peak 

in the spectrum at 5X, which is the speed of the input 

shaft.   For this particular example, the vibration from 

the input accelerometer at 5X is 2.5 times greater for 

the gearbox with imbalance in the input shaft compared 

to the healthy gearbox.   

3.4 Continuous Wavelet Transform 

For visual understanding of the impulse in the time 

synchronous signal, time-frequency method such as the 

continuous wavelet transform can reveal the broken 

gear tooth impact as described by Zheng et al. (2002). 

In this particular example, the continuous wavelet 

transform with a mother wavelet of Daubechies order 8 

is used to process the time synchronous average signal 

and the impulse can be clearly seen in Figure 7. For 

faults that cause impacts or are transient in nature, the 

use of time-frequency signal processing methods such 

as the continuous wavelet transform can be used to 

provide a visual understanding of the particular fault 

that is occurring.   

Figure 7: Continuous Wavelet Transform for Gearbox 

containing a gear with a broken tooth 
 

3.5 Discrete Wavelet Transform 

The vibration exhibited by a gearbox with a multitude 

of frequency components requires the use of advanced 

signal processing techniques to decompose the signal to 

isolate particular fault signatures more easily.  The use 

of wavelet decomposition described by Peng et al 

(2003) is well suited for this particular task, in that the 

high frequency aspects of the signals denoted as the 

details can be isolated from the low frequency 

components.   The gearbox vibration signal for a bent 

shaft shown in Figure 8 is an example in which the use 

of the wavelet decomposition technique provided a 

more robust feature set for fault diagnosis. 

 
Figure 8: Vibration Time Synchronous Average Time 

Signal for Gearbox with Bent Input Shaft 

 

The time synchronous vibration signal for a bent shaft 

condition shows an impulse impact along with a lower 

frequency harmonic component.  The impact can be 
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quantified by features such as kurtosis from the time 

synchronous signal; however the harmonic component 

is of particular interest since it is occurring at a 

frequency of 5 times the output shaft rotating speed 

which is the input shaft speed.   

A wavelet decomposition of level 5 with a mother 

wavelet of Daubechies order 8 is used to further 

decompose the signal; the result in Figure 9 shows the 

approximation level 5 signal and the original signal 

after removing the approximation signal. The 

decomposition technique can be used to further analyze 

the harmonic component or the impact. 

  
Figure 9: Wavelet Decomposition Signal for Bent Shaft 

Case 

Further processing of the harmonic signal by taking the 

Fast Fourier Transform shown in Figure 10 can also be 

used to extract additional information. 

 
Figure 10: Frequency Spectrum of Harmonic 

Component after using wavelet decomposition 

 

The frequency spectrum prior to decomposition would 

be difficult to interpret since the impulse would spread 

broadband energy; the frequency spectrum of the 

approximation signal provides much more relevant 

information related to the harmonic component 

associated with the input shaft speed.   The peak at 5X 

divided by the next largest peak in the approximation 

signal spectrum was one of the features used to 

characterize the input bent shaft fault. 

3.6 Spectral Kurtosis 

Applying the kurtosis statistical measure for the raw 

vibration time signal is not necessarily suitable for 

detecting incipient damage and the use of a more 

localized way of capturing the transient nature of 

impulses generated from gears or bearings with early 

stages of damage are needed.  The use of the spectral 

kurtosis by Antoni et al. (2006) has shown to be 

suitable solution for characterizing the transient 

impulsive type faults that occur for mechanical 

components; the spectral kurtosis technique has shown 

to be effectively used as a machine surveillance 

indicator as well as a way to select an optimum band 

pass filter for mechanical fault detection.   

The overall procedure for computing the spectral 

kurtosis described by Antoni (2006) consists of taking 

the Short Time Fourier Transform (STFT) for a given 

block-size and computing the kurtosis statistical 

calculation across each spectral line; this provides a 

kurtosis value as a function of the frequency.  The use 

of spectral kurtosis for the purpose of the gearbox 

health assessment and diagnostic method was to use the 

features from the spectral kurtosis calculation to 

characterize the overall health status of the gearbox.    

A plot of the spectral kurtosis value as a function of 

frequency is shown in Figure 11 for a healthy gearbox 

and a gearbox with a broken tooth on an idler shaft 

gear.  There is a noticeable difference in the kurtosis 

value at higher frequency and in particular for the 

output accelerometer in a frequency range of 10-20 

KHz, the kurtosis value is much larger for the damaged 

gearbox.   

For both the input and output vibration signal, three 

frequency bands (below 10 KHz, from 10 KHz-20 KHz 

and above 20 KHz) were used to calculate the sum of 

the kurtosis value in each frequency band and these 6 

features were potential features that could be selected 

to determine the overall gearbox health.   

In this particular example shown in Figure 11, the 

spectral kurtosis sum feature from 10 KHz-20 KHz for 

the output accelerometer was 9.5 times greater than the 

same feature for the healthy gearbox; this reaffirms the 

utility of the spectral kurtosis feature extraction method 

for gearbox healthy assessment.  The spectral kurtosis 
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band features provide an additional indicator for 

determining the overall health state of the gearbox but 

does not provide detail information on the particular 

fault that is occurring; further diagnosis requires 

additional features to isolate a particular gearbox fault. 

 
Figure 11: Spectral Kurtosis Plot for Healthy Gearbox 

and a Gearbox with Broken Gear Tooth 

 

3.7 Envelope Spectrum for Bearing Fault 

Frequency Peak Information 

The high frequency envelope frequency extraction 

method is a well established method for providing fault 

information for a particular bearing of interest.  The 

overall signal processing procedure consists of band-

pass filtering around an excited natural frequency, 

using the Hilbert Transform to calculate the envelope, 

and taking the Fourier Transform of the analytical 

signal.  As described by Tse et al. (2001), the impacts 

caused by a bearing defect excite a few high frequency 

modes of the system and the bearing fault frequencies 

are amplitude modulated; by performing the band pass 

filtering and demodulating the signal, this characteristic 

fault information at the peaks can be extracted.   For 

this particular application, a Chebyshev band pass filter 

was centered at 8950Hz with an upper frequency limit 

set at 9250Hz and a lower frequency limit at 8650Hz.   

For each particular bearing fault such as an inner race 

or outer race defect, there is a particular peak in the 

frequency domain that is representative of damage for 

this particular bearing failure mode.   As mentioned in 

Li et al. (2000), from the specified bearing geometry, 

there is a set of equations that relate the bearing fault 

frequencies with the number of rolling elements, pitch 

diameter, contact angle, and diameter of the rolling 

elements.  Figure 12 shows the envelope spectrum for 

the output accelerometer for both a healthy gearbox and 

a gearbox with an input shaft (output side) inner race 

bearing defect.  The peak at 245Hz, which corresponds 

to the ball pass frequency inner race (BPFI), is clearly 

much higher for the gearbox with this particular inner 

race problem.  In a similar manner the peaks at the 

other bearing fault frequencies can be extracted from 

the envelope spectrum and this subset of features can 

be used as inputs to classify the condition of the 

gearbox bearings.  

  

 
Figure 12: Envelope Spectrum for Healthy Gearbox and Gearbox with Inner Race Bearing Defect 
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3.8 Features Specifically for Gear Fault Diagnosis 

 

Particular features have been specifically developed for 

monitoring the health of gearbox gears, and these 

specific gear condition indicators were extracted and 

considered for use in the health assessment and fault 

diagnosis algorithm.  A more detailed description of the 

FM4, FMO, NB4, sideband level and index indicators 

are provided by Vecer et al. (2005), and a quick review 

of the potential use of each gear condition indicators is 

presented since the use of these indicators were 

incorporated into the gearbox health assessment and 

classification algorithm.  Higher sidebands around the 

gear-mesh frequency can indicate wear or 

manufacturing error such as eccentricity, the sideband 

index is an average value of the sidebands for a 

particular gear mesh frequency and this feature was 

taken for each gear.   The sideband level is a similar 

feature and is a ratio between the sum of the sidebands 

around a particular gear mesh frequency divided by the 

standard deviation in the time average synchronous 

signal.   

The FM4 is taken from the residual signal, in which the 

gear-mesh harmonics and shaft harmonics are removed 

and the kurtosis is calculated for the residual signal; if 

one tooth is detective or damaged this feature should be 

greater than normal.  The NB4 feature is also used to 

characterize gear damage and consist of band pass 

filtering around a particular gear mesh frequency and 

taking the envelope of the signal using the Hilbert 

Transform and calculating the kurtosis for the 

analytical signal.  The FMO feature, also known as the 

zero order figure of merit, is calculated by taking the 

ratio between the peak to peak vibration levels for the 

time synchronous average signal divided by the sum of 

the gear mesh harmonics.  These particular features 

were potential features used in the health assessment 

and fault classification method. 

4. REGIME SEGMENTATION  

In order to assess the gearbox condition and diagnosis 

particular faults, it is necessary to minimize the effect 

of operating variables.  This allows for a fair 

comparison, because the operating effects would 

influence the features extracted from the vibration 

signal and higher feature values might only be due to 

loading or speed effects and not due to degradation in a 

particular gear, bearing or shaft component.  The 

overall regime segmentation method is shown in Figure 

13 and is used to segment each data set by gear type, 

load, and speed.   The result of the regime segmentation 

procedure is 20 clusters, where each data set is 

segmented by load, speed, and gear type. 

 
Figure 13: Regime Segmentation Flow Chart 

 

4.1 Segment by Speed and Load 

The data sets provided from the gearbox test-rigs were 

collected during different operating regime settings, 

including different input shaft speeds as well as two 

levels of applied braking torque load on the output 

shaft.  By processing the tachometer square wave 

signal, the input shaft speed can be determined; for this 

particular experimental testing it is clearly observed 

that the input shaft speed was tested at 5 different 

speeds.  A light or heavy braking load was applied to 

the output shaft, depending on the loading case.  

Further analysis of the speed signal in each regime 

showed two clusters, the cluster that had the slightly 

lower speed was due to a greater braking torque load 

being applied.  Figure 14 shows the input shaft speed 

for the 45Hz input shaft speed cluster, the higher 

braking torque load causes a slight reduction in input 

shaft speed and allows for segmenting each data set 

into a high or light load regime. 

 
Figure 14: Example of Segmenting by Load 

4.2 Similarity Spectrum Measure for Gear Type 

Segmentation 
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The gear mesh frequency is based on the shaft speed 

and the number of teeth on a particular gear; the helical 

gears used in this gearbox had a gear mesh frequency at 

40 and 80 times the output shaft speed while the spur 

gears which had twice as many teeth had a gear mesh 

frequency at 80 and 160 times the output shaft speed.  

Using only information at the gear mesh frequency 

peaks at orders of 40, 80, and 160, was not enough 

information to segment the data sets by gear type.  This 

is due to harmonics of the gear mesh frequency would 

coincide with the gear mesh frequency of the other gear 

type; additional information is necessary to segment the 

data set by gear type.  

A similarity measured defined as the Spectral Angle 

Mapper has been used by Sheeley et al (2009) for 

current spectrum signals, and is incorporated into this 

gear type segmentation task.  The time synchronous 

average spectrum between two data sets denoted by si 

and sk is compared using the similarity measure shown 

in Eq. (3).  This calculation is essentially a dot product 

calculation and is a value between 0 and 1, with 1 

indicating a pair of spectrum that is closer in similarity. 
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The use of the similarity measure for segmenting by 

gear type is outlined by the procedure listed below: 

1. Find the data set in each of the 10 speed and load 

clusters that have the maximum value of the sum 

of the vibration spectrum peak at orders of 40 

and 120 times the output shaft speed from the 

output accelerometer. 

2. Calculate the similarity measure between this 

data set and all the other data sets in that regime, 

and take the 24 data sets that have the most 

similar spectrum as the helical gear type. 

3. The other remaining data sets in that regime are 

given the label as spur gears. 

 

By utilizing the information that corresponds to the 

gear mesh frequency peak and 3 times the gear mesh 

frequency peak for a helical gear mesh pair for the idler 

and output gear mesh pair, the data set with this 

maximum sum in each speed and load cluster is found.  

A data set in a particular regime that has a very similar 

spectrum would imply that it also contains helical 

gears.  An example plot is shown in Figure 15 (a), in 

which 24 helical gears are clearly separable using this 

method. 

This method for segmenting files by gear type was 

validated for a new labeled dataset published by PHM 

society for the same gearbox test-rig (PHM public 

Datasets, 2009). The labeled dataset consisted of 14 

cases, in which 8 were from spur gear and 6 from 

helical gear. Each labeled case, was run in 5 different 

speeds (30Hz, 35 Hz, 40Hz, 45 Hz, and 50Hz) under 

two loads (high and low) and 2 replications. Figure 15 

(b) shows the segmenting by gear type for the labeled 

data in one regime; however the method showed 100% 

classification for all other regimes. 

 
Figure 15: Example of Segmenting by Gear Type for 

50Hz and high load regime a) for PHM data challenge 

2009 dataset (PHM 2009 Data Challenge) b) validated 

result for labeled dataset (PHM Public Datasets, 2009) 

5. GEARBOX HEALTH ASSESSMENT 

An overall system health method or anomaly detection 

routine is used to provide an initial measure of 

diagnosis; it determines whether the system is in the 

normal state but not information on what fault is 

occurring.  Although knowledge of the exact fault that 
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is occurring is useful for reducing the maintenance cost 

related from logistics of ordering spare parts as well as 

reducing the labor time to determine the problem; only 

if the system health is degrading does it make sense to 

trigger a fault diagnosis classifier.  In this particular 

instance, an overall system health calculation is done to 

determine the data sets in which the gearbox is in the 

baseline healthy state regarding all of its components; 

this baseline data set in each regime is later used by the 

fault diagnosis calculation. 

5.1 Feature Set for Overall Gearbox Health 

A list of the feature set is provided below and includes 

features related to overall vibration level, gear sideband 

information, features that are correlated to impacts 

from broken tooth, bearing fault frequency features, 

and features related to peaks due to shaft imbalance or 

other shaft problems. 

 

1. RMS Value from raw time signal (input and 

output accelerometer). 

2. Peak to Peak Level from time synchronous 

signal (input and output accelerometer). 

3. Energy Operator from time synchronous average 

signal (input and output accelerometer). 

4. Peak at 25X from input accelerometer from time 

synchronous average FFT. 

5. Peak at 5X from input and output accelerometer 

from time synchronous average FFT. 

6. Mean, max and sum of a set of features related 

to peaks corresponding to sidebands around gear 

mesh frequency. 

7. Mean and sum of a set of the set of features 

related to sideband index and sideband level. 

8. Mean of spectral kurtosis features. 

9. Mean of a set of features related to bearing fault 

frequency peaks. 

10. Max of a set of features related to peaks for shaft 

related problems (10X, 15X, 20X). 

 

5.2 Health Assessment Calculation 

For each of the 20 regimes segmented by gear type, 

load and input shaft speed, the following health 

assessment procedure was used to determine the overall 

gearbox health state as well as find the baseline data 

sets. 

1. Normalize the feature set for health assessment 

so each feature has the same weight. 

2. Calculate the sum squared of the feature vector 

for each file and store this value as the health 

value for this data set. 

3. In each regime, find the file that has the 

minimum health value, this gearbox data set 

would be in the best health state since it has low 

vibration level, and features related to gear and 

bearing and shaft problems are all low values. 

4. After finding the gearbox data set with the 

minimum health value in each regime, use the 

similarity measure to find the other 3 data sets 

that are most similar to this healthy one. 

5. For each operating regime, there are 4 

replications, so the similarity measure is just 

used to ensure that the other 3 data sets that are 

also healthy in each regime are included. 

 

Overall, this method was able to find all 80 data sets for 

healthy gearbox; the baseline data sets were later used 

for designing the fault classification algorithm.   

Baseline Data files Speed Load 

Gear 

Type 

14 , 428, 431, 490 30 Hz Light Spur 

84 , 379 , 391 , 439 30 Hz Light Helical 

175 , 190, 369 , 446 30 Hz Heavy Spur 

72 , 287, 497, 531 30 Hz Heavy Helical 

101 , 165, 412, 524 35 Hz Light Spur 

70 , 380 , 420 , 548 35 Hz Light Helical 

184 , 265 , 355, 543 35 Hz Heavy Spur 

108 , 238 , 436 , 463 35 Hz Heavy Helical 

44 , 209 , 322 , 441 40 Hz Light Spur 

8 , 77, 182, 252 40 Hz Light Helical 

42 , 95 , 113, 469 40 Hz Heavy Spur 

233 , 297 , 320 , 444 40 Hz Heavy Helical 

181, 222, 356, 462 45 Hz Light Spur 

303, 504, 505, 519 45 Hz Light Helical 

116 , 212, 350, 425 45 Hz Heavy Spur 

29 , 128 , 186 , 452 45 Hz Heavy Helical 

4 , 172, 324 , 347 50 Hz Light Spur 

16 , 94, 194, 460 50 Hz Light Helical 

80, 193, 404, 555 50 Hz Heavy Spur 

376, 481, 526 , 536 50 Hz Heavy Helical 

Table 1: Identified baseline data files in each regime 

 

6. GEARBOX FAULT DIAGNOSIS 

6.1 Fault Diagnosis Overall Method 

The fault diagnosis process is responsible for 

identifying the location and kind of defects in each data 

set. There are different techniques that can be used for 

this purpose; with each technique having its own merits 

and drawbacks. Occam’s razor principle indicates that 

“the simplest method” to model the problem should be 

preferred. In this case, the simplest diagnosis method is 
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the rule-based diagnosis where each defect is diagnosed 

based on the values of some features exceeding 

specified thresholds. The drawback of rule-based is that 

the specification and selection of the thresholds will be 

very problem specific and cannot be generalized for 

other problems, especially since this particular 

application is dealing with physical defects. Although 

the vibration signature could usually indicate 

degradation and defects, it is quite difficult to specify 

thresholds for specific defects that can be generalized 

with a high level of certainty. 

Given the limitations of the rule-based diagnosis model 

in finding generalized thresholds or rules, a more 

general approach should be pursued. The approach 

should be capable of providing a more general method 

that provides the desired level of accuracy regarding 

fault classification. 

The overall proposed approach for gearbox diagnosis is 

a systematic regime-and-similarity-based and is 

summarized in Figure 16. The diagnosis will be 

performed in each regime separately and will be based 

on calculating the probability of defect for each of the 

defects (33 total defects) from the distance to the 

regime’s baseline. For each kind of defect a specific set 

of features are selected (based on experience and 

established literature for specific faults); the selected 

features should be capable of distinguishing the fault; 

the feature set will be normalized (0 to 1 scale); the 

distance of the feature set of each data file to the 

baseline in each regime is calculated; the Probability of 

defect P(d)  is   calculated for each data file for each of 

the 33 defects; and finally the probability value will be 

used to determine the existence of each defect in the 

data set. 

The proposed approach was used to detect 5 different 

defects: Broken tooth in idler shaft gear output side 

(Gear 3); input shaft imbalance; input shaft bent; output 

shaft bad key; and inner race defect for bearing on 

input shaft output side.  For each defect, different 

features were selected based on experience and the 

established literature in which certain features are 

known to be correlated to defects or degradation of 

specific mechanical components.  Other faults in other 

components can also be detected using the same 

methodology; only different features should be selected 

based on the particular fault signature.  

For the specific application of diagnosis using vibration 

data, most defect features are expected to increase from 

normal level if the defect exists. But, if the defect does 

not exist, the specific features are expected to be either 

equal or within the variation of the normal set. Since 

there is not enough data to establish the variations of 

the normal set, any feature value below the normal 

feature value will be considered within the normal 

region of operation, and any value greater than the 

normal feature shall be considered outside the normal 

region and might be an indicator of a defect based on 

how far away it is from the normal region. 

 

   
 

Figure 16: Overall diagnosis approach 

 

The distance function used is a modified Euclidean 

distance function as shown in Eq. (4-5) as follows: 
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Where D(X,Y) is the distance between the two feature 

vectors X and Y each of size n, and U(X-Y) is the unit 

step function as defined by Eq. (5).  The modified 

distance function will be used to find the distance of 

each feature vector in a regime to the feature vector of 

the normal set. But, some data sets might have some 

features lower than the normal set, which can be 

explained by the variations in the normal regime 

operation. These data sets are within the normal 

variation for the specific feature. The variance in a 

particular vibration feature can be due to several factors 

related to sensor noise and for this application the noise 

on both accelerometers and the tachometer signal 

would have an influence on the feature values.  The 

probability of defect calculation, by using a distance 

measure that combines information from multiple 

features and sources of information as well as not 

considering features that have values less than the 

baseline value accounts for some of the uncertainty in 

the feature values due to sensor noise.   

The traditional Euclidean distance measure uses the 

difference between the attributes squared, and thus if a 

feature is less than normal its distance is still positive 
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and will be considered an increased value with respect 

to normal; and hence would not be differentiated from a 

feature that is higher than normal with the same 

difference. The modified Euclidean distance will 

consider any feature value below the normal value to be 

within the normal region and the distance of the 

specific feature will be zero. Thus the modified 

distance function D(X,Y) ,presented in Eq. (4), can be 

considered as the distance from feature vector X to the 

region bounded by Y rather than the distance from 

feature vector X to feature vector Y.   Giving a weight 

of zero to features that are below normal or a set 

threshold in a distance calculation shares some 

similarities to the non-linear mapping method described 

by Bechhoefer et al. (2003), used in the vibration based 

health indicator calculation for the helicopter health and 

usage monitoring system. 

The probability of defect Pf(d) for a given data set f is 

calculated as shown in Eq. (6). 
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Where Pf(d) is the probability of the data set having a 

defect type d (where d=1,…33); Xf is the normalized 

feature vector for data set f; Nf is the normalized 

feature vector for the normal baseline in the same 

regime of data set f; and D(Xf,Nf) is the modified 

Euclidean distance function described in Eq. (4).  Since 

in each of the 20 regimes (shown in table 1) there are 

four normal data sets, then Nf is the mean of the 

normalized feature vectors of the four normal data sets 

in that regime. Note that Pf(d) would be a value 

between zero and one, indicating the probability of 

each data file of having a specific defect, based on its 

distance from the normal baseline within its regime.  

The diagnosis process for each defect type will be 

based on selecting the appropriate feature vector that is 

able to isolate the defect from other possible 

mechanical defects. 

6.2 Gear  Tooth Breakage Signature 

The proposed method was used to diagnose broken 

tooth problem in the idler shaft gear that was meshing 

with the output gear.   The expected signature of a 

gearbox with a broken tooth is an overall higher level 

of vibration energy, impact occurring once per 

revolution of the broken tooth in the time signal; higher 

sidebands around the Gear Mesh Frequency (GMF); 

and natural frequency excitation due to the impact from 

the broken tooth.  Due to the complexity of the given 

problem and the overlap of different defect signatures, 

these signatures could also be an indicator of other 

problems.  A subset of features is needed that can 

isolate this specific defect from other defects that could 

have similar signatures.  

The selected features for this case are provided below:  

 

1. RMS of envelope signal of the input 

accelerometer. 

2. RMS of envelope signal of the output 

accelerometer. 

3. Ratio between RMS of raw signal from output 

accelerometer to input accelerometer. 

4. Ratio between sidebands: (sum of sidebands 

around gear 3) divided by (sum of sidebands 

around gear 4) from output accelerometer. 

 

The first two features help detect the overall vibration 

excitation around the natural frequency; this is 

quantifying the natural frequency excitation due to the 

impact defect. Although a bearing defect will also 

excite high frequency modes of the system; the energy 

in the envelope spectrum would be at a few peaks and 

not spread across the entire spectrum for a bearing 

defect.  The third feature indicates that the vibration on 

the output side is generally higher than the input side 

(pointing towards either Gear 3 or Gear 4 problems 

rather than Gear 1 or Gear 2). The fourth feature 

indicates that the sidebands of Gear 3 are higher than 

those of Gear 4 and points towards Gear 3 as the 

probable cause. The combination of these four features 

indicates the signature of a gear with broken tooth 

problem; on the output side; and most likely due to a 

Gear 3 problem.  

 
Figure 17: Probability of Gear 3 broken tooth defect for 

40Hz speed, light load, and helical gear regime 

 

After calculating the probability of defect for each data 

set in its regime using the four features described 

above, it was clear that in each regime 8 data files 

could be separated from the other data files.  Figure 17, 
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shows an example from a regime (speed= 40 Hz, 

Load=Light, Gear= Helical) where the probability of 

defect was calculated, and it is clear that eight of these 

data files can be isolated from the other files because 

they have a higher probability of defect for a broken 

tooth in Gear 3.  The same method could be used for 

detecting a broken tooth problem in the other gears or 

for diagnosing other gear problems, contingent upon 

selecting the appropriate feature set.  

6.3 Shaft Imbalance Fault Detection 

The proposed method was also used to diagnose impact 

shaft imbalance. A mass imbalance for a particular 

shaft would have a higher peak corresponding to 1X for 

the particular imbalance shaft and this particular 

indicator is commonly used to diagnosis shaft 

imbalance problems for rotating machinery. But for this 

specific problem, the peak at 1xrpm also overlaps with 

the peaks at the characteristic bearing fault frequencies; 

in particular the BPFO of the bearings on the idler shaft 

(1.0174xrpm of input shaft) and the BPFI of the 

bearings on the output shaft (0.9895xrpm of input 

shaft).  So, a high amplitude peak at 1xrpm of input 

shaft could be caused by either of these problems. The 

selected features are as follows: 

1. Peak in time synchronous average spectrum 

from input accelerometer at input shaft speed. 

2. Peak in time synchronous average spectrum 

from output accelerometer at input shaft 

speed. 

3. Peaks in envelope spectrum at input shaft 

speed from both input and output 

accelerometer. 

 

The first two features are from the time synchronous 

average and should filter out non-synchronous 

multiples of 1xrpm of input shaft. The third feature 

indicates amplitude modulation caused by the 

imbalance.  This provides a feature set that provides 

indication of an input shaft imbalance but also 

indicators that are not influenced from other potential 

mechanical defects that have peaks in a similar 

frequency range. 

After calculating the probability of defect for each data 

file in its regime using the three features described, it 

was clear that in each regime, 4 data sets could be 

separated from the other data sets.  Figure 18, shows an 

example from a regime (speed= 50 Hz, Load=Heavy, 

Gear= Spur) where the probability of defect was 

calculated, and it is clear that four of these data files 

can be isolated from the other files because they have a 

higher probability of defect for input shaft imbalance.  

 
Figure 18: Probability of input shaft imbalance defect 

for regime of 50Hz speed, heavy load, and spur gears. 

 

6.4 Bent Shaft Diagnosis 

A bent shaft signature is dependent on the location of 

the bent, i.e. bent before the bearings, bent on the 

bearings, bent on the gears, or bent on the couplings. 

Each one of the aforementioned cases has a distinct 

signature.  A common signature characteristic of all 

these potential bent shaft faults is the high amplitude at 

the 1X harmonic of the shaft speed. Specific additional 

characteristics would apply to the other cases, such as a 

bent on the coupling which would have an impact in 

the time domain signal which was the case for this data.  

For detecting a bent shaft, the following features were 

selected: 

 

1. Kurtosis of the time synchronous average of 

the output signal vibration.  

2. Ratio between peak at 1xrpm of input shaft to 

next highest peak after wavelet decomposition and 

FFT of approximation signal. 

 

The wavelet decomposition was used to isolate both the 

impact and the 1X harmonic component of the input 

shaft (5X of output shaft); including indicators that 

quantify the impact and the harmonic component is 

necessary for the bent shaft diagnosis.  

Figure 19, provides an example from a regime (speed= 

50 Hz, Load=Light, Gear=Helical) where the 

probability of defect was calculated, and it is clear that 

four of these data files can be isolated from the other 

files because they have a higher probability of defect 

for a bent input shaft. 

 



International Journal of Prognostics and Health Management 

 14  

 
Figure 19: Probability of input bent shaft defect for 

regime of 50Hz speed, light load, and helical gears. 

 

6.5 Bearing Fault Detection 

For detecting the inner race defect in the bearing on the 

input shaft output side, the feature selected was the 

ratio of feature 1 below divided by feature two: 

 

1. Peak at Ball Pass Frequency Inner Race 

(BPFI) from the Envelope spectrum of the 

output accelerometer, input shaft bearing. 

2. Peak in time synchronous average spectrum at 

input shaft speed from input and output 

accelerometer. 

 

Figure 20, shows an example from a regime (speed= 50 

Hz, Load=Light, Gear=Helical) where the probability 

of defect was calculated, it is clear that four of these 

data files can be isolated from the other files because 

they have a higher probability of inner race defect for 

the bearing on the input shaft/output side.  

 
Figure 20: Probability of inner race bearing defect on 

the input shaft/output side bearing calculated for regime 

of 50Hz speed, light load, and helical gears. 

 

6.6 Detecting Bad Key Fault 

For this gearbox system, the output shaft could be in 

two different states, either the health state or a defect 

state; where the defect state is due to a loose coupling 

between the output shaft and the load because of a 

faulty key.  This faulty shaft key would cause slipping 

between the output shaft and the load; the vibration 

signals and the tachometer information can be used to 

isolate this particular event.   

 
Figure 21: Signature of bad key defect. 

 

Figure 21 (b) shows the time synchronous average 

signal of a data set with a bad key. It can be noticed 

from the signal of an impact that is of much longer 

duration; this is due to the averaging of the time 

synchronous signal and the slipping of the shaft speed 

due to the fault key.   Notice that this signature of a bad 

key is in sharp contrast to the time synchronous signal 

shown in Figure 21 (a) for a gearbox without any faults 

including a key that is working properly.  Also if one 



International Journal of Prognostics and Health Management 

 15  

would compare the signature of a broken tooth 

compared to a bad key by examining the time 

synchronous average time signal; although in both 

cases there is this transient impact, the bad key has a 

specific impact that last for a much longer duration due 

to the slipping of the output shaft.  Utilizing a specific 

set of features that can isolate the bad key from not 

only the baseline case, but also faults that also have 

transient impacts is what is needed for providing the 

specific root cause diagnosis information. 

 

For detecting the bad key defect on the output shaft, the 

following features were selected: 

1. Kurtosis from time synchronous average time 

signal from output accelerometer. 

2. Spectral Kurtosis feature from output 

accelerometer, for band from 10 KHz to 20 

KHz. 

 

Figure 22 shows the probability of defect results for the 

bad key case; the result show 4 data sets in a particular 

regime that clearly have this problem. 

 

 
Figure 22: Probability of bad key defect for regime of 

35Hz speed, light load, and spur gears. 

7.  CONCLUSION 

This paper introduced a systematic methodology for 

gearbox health assessment and fault classification.  The 

methodology was validated for 560 data sets of gearbox 

vibration data provided by the Prognostics and Health 

Management Society for the 2009 data challenge 

competition, and won the first place in the student 

division.  The methodology involves the utilization of a 

comprehensive set of signal processing and feature 

extraction methods; in that the use of a single signal 

processing method would not be applicable for a 

mechanical system that consisted of a multitude of 

different faults.  A regime segmentation approach was 

necessary to provide a fair comparison between data 

sets and grouped the data by load, speed, and gear type.  

A health assessment algorithm was used to classify and 

find the 80 baseline healthy data sets. Using the 

baseline data sets provided by the health assessment 

method, a fault diagnosis method based on a modified 

Euclidean distance calculation from normal along with 

specific features correlated to different fault signatures 

is used to diagnose specific faults.  The fault diagnosis 

method is evaluated for the diagnosis of five different 

gearbox fault types, and could be further extended for 

other faults as long as a set of features can be correlated 

with a known fault signature.  The methodology can be 

further applied to other rotating machine applications 

involving gear, shaft, or bearing components  

8. SUGGESTIONS FOR FUTURE WORK 

Some of the future work looks to further refine some of 

the techniques and methods employed as follows: 

1. Refine the distance calculation algorithm used 

for fault diagnosis. The current modified 

Euclidean distance function used in this paper 

has proven to be very useful for vibration-

based diagnosis applications and can be 

further enhanced to take baseline variation 

into consideration whenever such data is 

available 

2. Additional signal processing methods such as 

the empirical mode decomposition could be 

evaluated to see if a more robust feature set 

can be provided for gearbox mechanical 

defects.  

3. A “regime-independent” fault signature 

discovery method would be evaluated. Such a 

method would be very useful for diagnosis; in 

such that whenever a specific fault is 

identified in one regime, the signature could 

be captured and used to find similar faults in 

other regimes.   
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