
 

 

 

International Journal of Prognostics and Health Management, ISSN 2153-2648, 2011 001 1 

Uncertainty Quantification in Fatigue Crack Growth Prognosis 

Shankar Sankararaman
1
, You Ling

2
, Christopher Shantz

3
, and Sankaran Mahadevan

4 

1,2,3,4
 Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN-37235, USA. 

shankar.sankararaman@vanderbilt.edu 

you.ling@vanderbilt.edu 

chris.shantz@vanderbilt.edu 

sankaran.mahadevan@vanderbilt.edu   

 

ABSTRACT 
This paper presents a methodology to quantify the 

uncertainty in fatigue crack growth prognosis, applied to 

structures with complicated geometry and subjected to 

variable amplitude multi-axial loading. Finite element 

analysis is used to address the complicated geometry and 

calculate the stress intensity factors. Multi-modal stress 

intensity factors due to multi-axial loading are combined to 

calculate an equivalent stress intensity factor using a 

characteristic plane approach. Crack growth under variable 

amplitude loading is modeled using a modified Paris law 

that includes retardation effects. During cycle-by-cycle 

integration of the crack growth law, a Gaussian process 

surrogate model is used to replace the expensive finite 

element analysis. The effect of different types of uncertainty 

– physical variability, data uncertainty and modeling errors 

– on crack growth prediction is investigated. The various 

sources of uncertainty include, but not limited to, variability 

in loading conditions, material parameters, experimental 

data, model uncertainty, etc. Three different types of 

modeling errors – crack growth model error, discretization 

error and surrogate model error – are included in analysis. 

The different types of uncertainty are incorporated into the 

crack growth prediction methodology to predict the 

probability distribution of crack size as a function of number 

of load cycles. The proposed method is illustrated using an 

application problem, surface cracking in a cylindrical 

structure 

1. INTRODUCTION 

The scientific community has increasingly resorted to the 

use of computational models to predict the performance of 

engineering components and systems so as to facilitate risk 

assessment and management, inspection and maintenance 

scheduling, and operational decision-making. Model-based 

prognosis, i.e. predicting the performance of a system using 

a physics-based model is promising for health management. 

However, no model can perfectly represent the system and 

hence it is necessary to include model form errors and 

model uncertainty in the prognosis. Secondly, complex 

engineering systems may have to be modeled using multiple 

models that interact with one another. In such cases, each 

model has its own sources of error/uncertainty and the 

interaction between the errors of multiple models is non-

trivial. Some errors are deterministic while some others are 

stochastic. Systematic methods are needed to quantify the 

uncertainty and confidence associated with the model 

prediction. Hence, prognosis methods need the following 

capabilities: (1) integration of multiple models, (2) 

quantification of different types of uncertainty and error 

(physical variability, data uncertainty, and model 

uncertainty), and (3) integration of the various types of 

uncertainty to calculate the overall uncertainty in the results 

of prognosis. 

This paper develops an uncertainty quantification 

methodology to meet the above needs, and uses the problem 

of fatigue crack growth to illustrate such development. The 

objective of this problem is to predict the crack growth in a 

structural component as a function of number of load cycles. 

Mechanical components in engineering systems are often 

subjected to cyclic loads leading to fatigue, crack initiation 

and progressive crack growth. It is essential to predict the 

performance of such components to facilitate risk 

assessment and management, inspection and maintenance 

scheduling and operational decision-making. Researchers 

have pursued two different kinds of methodologies for 

fatigue life prediction. The first method is based on material 

testing (to generate S-N, ε –N curves) and use of an 
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assumed damage accumulation rule. In this method, 

specimens are subjected to repeated cyclic loads under 

laboratory conditions. Hence the results are specific to the 

geometry of the structure as well as the nature of loading. 

Further, the performance of these components under field 

conditions is significantly different from laboratory 

observation, due to various sources of uncertainty 

accumulating in the field that render experimental studies 

less useful. Hence, this methodology cannot be used directly 

to predict the fatigue life of practical applications wherein 

complicated structures subjected to multi-axial loading.   

The second method for fatigue life prediction is based on 

principles of fracture mechanics and crack growth analysis. 

A crack growth law is assumed and the progressive growth 

of the crack is modeled. However, this is not 

straightforward. Fatigue crack growth is a stochastic process 

and there are different types of uncertainty – physical 

variability, data uncertainty and modeling errors, associated 

with it. Uncertainty appears at different stages of analysis 

and the interaction between these sources of uncertainty 

cannot be modeled easily. Further, the application of crack 

growth principles to complicated structures, subjected to 

multi-axial variable amplitude loading requires repeated 

evaluation of finite element analysis which makes the 

computation expensive.  

Some of these problems have been investigated by 

researchers in detail. The first problem in using a crack 

growth model is that the initial crack size is not known. This 

issue is further complicated by the fact that small crack 

growth propagation is anomalous in nature. This problem 

was addressed by the introduction of an equivalent initial 

flaw size (EIFS) nearly thirty years ago. The concept of 

EIFS was introduced to by-pass small crack growth analysis 

and to substitute an initial crack size in long crack growth 

models such as Paris’ law. However EIFS does not 

represent any physical quantity and cannot be measured 

using experiments. Initially, certain researchers used 

empirical crack lengths between 0.25 mm and 1 mm for 

metals (JSSG, 1998; Gallagher et al., 1984; Merati et al., 

2007). Later, several researchers (Yang, 1980; Moreira et 

al., 2000; Fawaz, 2000; White et al., 2005; Molent et al., 

2006) used back-extrapolation techniques to estimate the 

value for equivalent initial flaw size. Recently, Liu and 

Mahadevan (2008) proposed a methodology based on the 

Kitagawa-Takahashi diagram (Kitagawa and Takahashi, 

1976) and the El-Haddad Model (Haddad et al., 1979) to 

derive an analytical expression for the equivalent initial flaw 

size. The current research work uses this concept to 

calculate the statistics of EIFS from material properties such 

as threshold stress intensity factor and fatigue limit. These 

material properties are calculated from experimental data 

and the associated data uncertainty due to measurement 

errors, sparseness of data, etc. needs to be taken into 

account.  

The next step in fatigue crack growth prognosis is to choose 

a crack growth model.  There are many crack growth 

models available in literature. In this paper, a modified Paris 

law is used as the crack growth law for the sake of 

illustration, but an error term (treated as a random variable) 

is added to represent the fitting error since experimental data 

were used to estimate the coefficients of the Paris model. 

Further, the model coefficients are also treated as random 

variables. The effects of variable amplitude loading are 

considered by including retardation effects along with 

modified Paris’ law. Several models (Wheeler, 1972; 

Schjive, 1976; Noroozi et al., 2008) have been proposed to 

tackle variable amplitude loading conditions and this paper 

uses Wheeler’s retardation model (Wheeler, 1972) only for 

illustration purposes. Further, only coplanar cracks have 

been considered for analysis. 

The modified Paris law based on linear elastic fracture 

mechanics calculates the increase in crack size as a function 

of the stress intensity factor, during each loading cycle. The 

stress intensity factor, in turn, is a function of the current 

crack size, crack configuration, geometry of the structural 

component and loading conditions. If structures with 

complicated geometry are subjected to multi-axial loading, 

then the stress intensity factor needs to be calculated 

through expensive finite element analysis, at every loading 

cycle. This paper replaces the finite element analysis with a 

surrogate model, known as the Gaussian process (GP) 

interpolation. Several finite element analysis runs are used 

to train this surrogate model and then, the surrogate model is 

used to predict the stress intensity factor, to be used in the 

crack growth law. There are two types of errors in this 

procedure. First, the finite element analysis has 

discretization error that needs to be accounted for while 

training the surrogate model. Second, the surrogate model 

adds further uncertainty since it is obtained by fitting the 

model to the (finite element) training data. 

In addition to the above mentioned model uncertainty and 

data uncertainty (used to calculate the EIFS), natural 

variability in many input variables introduces uncertainty in 

model output. The loading on the structure is usually 

random in nature. A variable amplitude multi-axial loading 

history consisting of bending and torsion is illustrated in this 

paper. Natural variability also includes variability in 

material properties, geometry and boundary conditions. The 

variability in certain material properties such as fatigue limit 

and threshold stress intensity factor is considered while 

deriving the statistical distribution of EIFS. The geometry of 

the specimen and boundary conditions are considered 

deterministic in this research work. 

The main focus of this paper is to investigate in detail each 

source of uncertainty and propose a methodology that can 

effectively account for all of them. Finally, the developed 

framework is used to predict the probabilistic fatigue life of 

the structure.  
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The next section reviews the existing literature on this topic 

and motivates the current study. Section 3 presents the 

algorithm used in this paper to predict the fatigue life of 

structures with complicated geometry and subjected to 

variable amplitude, multi-axial loading. The various sources 

of uncertainty in this procedure are discussed in Section 4. 

Section 5 presents the proposed framework for uncertainty 

quantification in crack growth prediction. Section 6 

illustrates the methodology through an example, considering 

cracking in a cylindrical structure. 

2. LITERATURE REVIEW 

Numerous studies have dealt with methods for uncertainty 

quantification in prognosis. Most of these studies have 

focused mainly on natural variability; sources of data 

uncertainty and model uncertainty have not been considered 

in detail. Hemez (2005) discusses uncertainty quantification 

in prognosis and uncertainty propagation techniques that 

deal only with physical variability. Chelidze and Cusumano 

(2004) demonstrate a dynamical systems approach to 

prognosis in an electromechanical system and estimate the 

uncertainty in the prognosis results. Saha and Goebel (2007) 

discuss diagnostics and prognostics of batteries using 

Bayesian techniques. Medjaher et al (2009) use dynamic 

Bayes networks for prognosis of industrial systems. These 

studies mostly consider physical variability; modeling errors 

and their sources are not analyzed in detail; and data 

uncertainty due to sparse data is not considered. 

The “damage prognosis” project at Los Alamos national 

laboratory (Doebling and Hemez, 2001; Hemez et al., 2003; 

Farrar et al., 2004; Farrar and Lieven, 2006) considered the 

problem of fatigue cracking in detail and proposed sampling 

techniques to predict crack growth in composite plates; the 

error between prediction and observation was also 

characterized. Loading (uniaxial impact loading) conditions 

and geometric and material properties are treated as random 

variables. Surrogate models were used to replace expensive 

finite element models, and included in a sampling based 

framework for uncertainty propagation. Finite element 

analysis results were used to train the surrogate models, but 

the discretization error was not quantified. Further, the 

errors due to usage of surrogate models, errors in crack 

growth model, etc. were not addressed. 

Besterfield et al. (1991) combined probabilistic finite 

element analysis with reliability analysis to predict crack 

growth in plates. Random mixed mode loading cycles, 

physical variability in material properties, randomness in 

crack configuration (size, position and angle) were 

considered. However, the implementation of probabilistic 

finite element analysis is computationally expensive for 

structures with complicated geometry. Other sources of 

uncertainty such as data uncertainty and model uncertainty 

were not considered. 

Patrick et al (2007) introduced an online fault diagnosis and 

failure prognosis methodology applied to a helicopter 

transmission component. A crack growth model (Paris law) 

was used for fatigue life prediction. Bayesian techniques 

were implemented to infer the initial crack size, which was 

used for probabilistic fatigue life prediction using particle 

filter techniques. Other sources of uncertainty such as error 

in Paris law, variability in model parameters, and 

randomness in loading were not considered. 

Gupta and Ray (2007) developed algorithms for online 

fatigue life estimation that relied on time series data analysis 

of ultrasonic signals and were built on the principles of 

symbolic dynamics, information theory and statistical 

pattern recognition. Physical variability in material 

geometry (surface defects, voids, inclusions, sub-surface 

defects), minor fluctuations in environmental conditions and 

operating conditions were used to quantify the uncertainty 

in detection which was further used to quantify the 

uncertainty in prognosis.  

Pierce et al (2007) discussed the application of interval set 

techniques to the quantification of uncertainty in a neural 

network regression model of fatigue life, applied to glass 

fiber composite sandwich materials.  This paper only 

considered the uncertainty in input data and other sources of 

uncertainty were not investigated in detail. 

Orchard et al (2008) used the method of particle filters for 

uncertainty management in fatigue prediction. However, the 

various sources of uncertainty were not clearly delineated 

and considered in the analysis. While the use of conditional 

probability has been recommended for probabilistic 

predictions, this turns out to be expensive when variable 

amplitude loading cycles are considered, as the ensemble of 

predictions grows in size as a function of the number of 

loading cycles. 

Papazian et al (2009) developed a structural integrity 

prognosis system (SIPS), based on collaboration between 

sensor systems and advanced reasoning methods for data 

fusion and signal interpretation, and modeling and 

simulation. Probabilistic principles such as likelihood and 

conditional probability were used to compare model 

predictions and sensor data. While measurement errors and 

sensor data were considered in detail, solution errors, 

variability of model parameters, randomness in loading, etc 

were not considered. 

Thus, past studies on uncertainty quantification in prognosis 

have ignored several sources of uncertainty or not 

investigated them in detail. Physical variability (such as 

randomness in loading conditions, material properties, etc.) 

has been mainly studied by researchers, whereas other 

sources of uncertainty such as data uncertainty and model 

uncertainty have not been fully addressed.  
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This paper proposes a framework which can effectively 

account for different sources of uncertainty – physical 

variability, data uncertainty, and model uncertainty.  

Data uncertainty arises due to the use of sparse data to 

construct probability distributions for input parameters. In 

previous studies, the input parameters are usually assumed 

to have completely known distributions (usually, normal) 

and prognosis is carried out using these distributions. In 

some cases, there may be enough data available to quantify 

such precise distributions. However, in many cases, it is 

impossible to construct precise probability distributions 

using a few available data (sparse data). Hence, there is 

uncertainty in the probability distributions constructed from 

such data. Therefore, this paper proposes a methodology 

where (1) the uncertainty in the distribution parameters is 

quantified using a resampling technique, and (2) an overall 

unconditional probability distribution of the quantity of 

interest, that includes the contribution of data uncertainty, is 

calculated. 

When model-based methods are used for prognosis, it is 

essential to account for the different types of model 

uncertainty and errors. The significance of model 

uncertainty increases when there are multiple interacting 

models, because the quantification of the combined effect of 

the different sources of model uncertainty is non-trivial. In 

this paper, the algorithm for crack growth propagation uses 

multiple interacting models – finite element model, 

surrogate model, crack growth law, etc. First, the paper 

proposes methods to quantify the uncertainty/error in each 

of the individual models. It is important to note that some 

errors are deterministic (finite element discretization error) 

while some others are stochastic (crack growth law 

uncertainty, surrogate model prediction uncertainty), and 

they occur at different stages of the analysis. Therefore, the 

quantification of the overall uncertainty due to the 

combination of multiple sources of model uncertainty/errors 

is not trivial. This paper proposes a methodology for overall 

uncertainty quantification, where deterministic errors are 

addressed by correcting and stochastic errors are addressed 

through sampling. 

Thus the contributions of this paper are: (1) connect 

different models such as finite element model, surrogate 

model, crack growth law, etc. efficiently; (2) quantify the 

uncertainty in each model separately; (3) treat deterministic 

model errors and stochastic model errors separately; (4) 

include physical variability as well as data uncertainty; and 

(5) quantify the overall uncertainty in crack growth 

prediction by correcting deterministic errors and sampling 

stochastic errors. The major advantage of the proposed 

methodology is that it provides a framework for including 

not only physical variability, but also data uncertainty and 

multiple model errors (both deterministic and stochastic). 

The various sources of uncertainty are discussed in detail, 

later in Section 4. Prior to that, the algorithm for crack 

growth propagation is outlined in the following section. 

3. CRACK GROWTH PROPAGATION 

Consider the growth of an elliptic crack. A schematic of the 

crack growth is shown in Figure 1. 

 

Figure 1. Elliptic Crack Growth 

In Figure 1, ax denotes the length of the semi-major axis and 

ay denotes the length of the semi-minor axis. The aspect 

ratio, calculated as ratio between ax and ay is denoted by γ. If 

θ denote the angle of orientation, then ax corresponds to θ = 

0° and ay corresponds to θ = 90°. Crack growth laws such as 

Paris law (applicable to long cracks) predict the increase in 

crack size as a function of stress intensity factor, which in 

turn depends on the current crack size (ax, ay), aspect ratio 

(γ), angle of orientation (θ) and loading (L). In this paper, a 

has been used to denote the crack size in two directions, i.e. 

a = [ax, ay]. Hence, the two dimensional array a contains 

information about aspect ratio (β) as well. Starting with an 

initial crack size (a0), the growth of the crack can be 

modeled and the crack size after a given number of cycles 

can be calculated. However, the initial crack size cannot be 

calculated exactly. The concept of EIFS was proposed to 

tackle this problem. Starting with the introduction of EIFS, 

this section explains the various steps involved in using a 

crack growth model to predict the crack size as a function of 

number of cycles. 

3.1 Use of EIFS in Crack Growth Law 

The rigorous approach to fatigue life prediction would be to 

perform crack growth analysis starting from the actual 

initial flaw, accounting for voids and non-metallic 

inclusions. If the initial crack size is large, then long crack 

growth models such as Paris’ law can be used directly. 

However, this is not the case in most materials. Hence the 

long crack growth model cannot be used directly. A 

schematic plot of the long crack and short crack growth 

curves is given in Figure 2. 

This paper uses a long crack model for fatigue crack growth 

analysis; the short crack growth calculations are bypassed 

 

θ ax 

a0 

a
y
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through the use of an equivalent initial flaw size, as 

explained later in this section. 

Figure 2. Schematic of Crack Growth 

Consider any long crack growth law used to describe the 

relationship between da/dN and ΔK, where N represents the 

number of cycles, a represents the crack size and ΔK 

represents the stress intensity factor. This paper uses a 

modified Paris’ law with Wheeler’s retardation model as: 

da/dN = φ
r
C (ΔK)

n
(1- ΔKth/ΔK)

m
 (1) 

Note that several models (Wheeler, 1972; Schjive, 1976; 

Noroozi et al., 2008) have been proposed to tackle variable 

amplitude loading conditions. This paper uses a Wheeler’s 

retardation model (Wheeler, 1972) only to illustrate the 

proposed uncertainty quantification methodology, and other 

appropriate models can also be used instead of the Wheeler 

model. In Eq. (1), φ
r
 refers to the retardation parameter 

(Sheu et. al., 1995), and is equal to unity if ai + rp,i > aOL + 

rp,OL where aOL is the crack length at which the overload is 

applied, ai is the current crack length, rp,OL is the size of the 

plastic zone produced by the overload at aOL, and rp,i is the 

size of the plastic zone produced at the current crack length 

ai. Else, φ
r
 is calculated

 
as shown in Eq. (2). 

φ
r
 = (rp,i / (aOL+rp,OL-ai))

λ
 (2) 

In Eq. (2), λ is the curve fitting parameter for the original 

Wheeler model termed the shaping exponent (Yuen et al., 

2006). Song. et al. (2001) observed that crack growth 

retardation actually takes place within an effective plastic 

zone. Hence the size of the plastic zone can be calculated in 

terms of the applied stress intensity factor (K) and yield 

strength (σ) as: 

rp = α (K/σ)
2
 (3) 

In Eq. (3), α is known as the effective plastic zone size 

constant which is calculated experimentally (Yuen et. al., 

2006). The retardation model parameters are calibrated for 

particular experimental conditions, which need to be 

matched to the problem at hand for proper application. The 

expressions in Eq. (2) and Eq. (3) can be combined with Eq. 

(1) and used to calculate the crack growth as a function of 

number of cycles. In each cycle, the stress intensity factor 

can be expressed as a function of the crack size (a), loading 

(L) and angle of orientation (θ). Hence, the crack growth 

law in Eq. (1) can be rewritten as: 

da/dN = g(a,L,θ) (4) 

The concept of an equivalent initial flaw size was proposed 

to bypass small crack growth analysis and make direct use 

of a long crack growth law for fatigue life prediction. The 

equivalent initial flaw size, a0 is calculated from material 

properties (ΔKth, the threshold stress intensity factor and σf, 

the fatigue limit) and geometric properties (Y) as explained 

in Liu and Mahadevan (2008). 

2

0
)/)(/1(

fth
YKa    (5) 

By integrating the expression in Eq. (1), the number of 

cycles (N) to reach a particular crack size aN can be 

calculated as shown in Eq. (6). 

 

   dadNN r )K)/K -(1K)( C/(1 m
th

n  (6) 

For structures with complicated geometry and loading 

conditions, the integral in Eq. (6) is to be evaluated cycle by 

cycle, calculating the stress intensity factor in each cycle of 

the crack growth analysis. The calculation of the stress 

intensity factor is explained in the following subsection. 

3.2 Calculation of Stress Intensity Factor 

The stress intensity factor ΔK in Eq. (6) can be expressed as 

a closed form function of the crack size for specimens with 

simple geometry subjected to constant amplitude loading. 

However, this is not the case in many mechanical 

components, where ΔK depends on the loading conditions, 

geometry and the crack size. Further, if the loading is multi-

axial (for example, simultaneous tension, torsion and 

bending), then the stress intensity factors corresponding to 

three modes need to be taken into account. This can be 

accomplished using an equivalent stress intensity factor. If 

KI, KII, KIII represent the mode-I, mode-II and mode-III 

stress intensity factors respectively, then the equivalent 

stress intensity factor Keqv can be calculated using a 

characteristic plane approach proposed by Liu and 

Mahadevan (2008) . The use of the characteristic plane 

approach for crack growth prediction under multi-axial 

variable amplitude loading has been validated earlier with 

several data sets. 

 

d
a
/d

N

K

Long crack growth

Small crack growth

Long crack 

Threshold
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During each cycle of loading, the crack grows and hence, 

the stress intensity factor needs to be reevaluated at the new 

crack size for the loading in the next cycle. Hence, it 

becomes necessary to integrate the expression in Eq. (6) 

through a cycle by cycle procedure. Each cycle involves the 

computation of ΔK using a finite element analysis 

represented by Ψ.  

ΔKeqv = Ψ (a, L, θ) (7) 

Repeated evaluation of the finite element analysis in Eq. (7) 

renders the aforementioned cycle by cycle integration 

extremely expensive, perhaps impossible in some cases. 

Hence, it is necessary to substitute the finite element 

evaluation by an inexpensive surrogate model. Different 

kinds of surrogate models (polynomial chaos, support vector 

regression, relevance vector regression, and Gaussian 

Process interpolation) have been explored and the Gaussian 

process modeling technique has been employed in this 

paper. A few runs of the finite element analysis are used to 

train this surrogate model and then, this model is used to 

predict the stress intensity factor for other crack sizes and 

loading cases (for which finite element analysis has not been 

carried out). 

3.3 Construction of Gaussian Process Surrogate Model 

A Gaussian process (GP) response surface approximation is 

constructed to capture the relationship between the input 

variables (a, L, θ) and the output variables (ΔK) in Eq. (5), 

using only a few sample points within the design space. The 

details of this interpolation technique are available in 

literature (Rasmussen, 1996; Santner, 2003; McFarland, 

2007).  

The basic idea of the GP model is that the response values Y 

(Keqv in this case), are modeled as a group of multivariate 

normal random variables, with a defined mean and 

covariance function. The benefits of GP modeling is that the 

method requires only a small number of sample points 

(usually 30 or less), and is capable of capturing highly 

nonlinear relationships that exist between input and output 

variables without the need for an explicit functional form. 

Additionally, Gaussian process models can be used to fit 

virtually any functional form and provide a direct estimate 

of the uncertainty associated with all predictions in terms of 

model variance. The framework of Gaussian process 

modeling is shown in Figure 3. 

Suppose that there are n training points, x1, x2, x3 … xn of a 

d-dimensional input variable (the input variables being the 

crack size and loading conditions here), yielding the 

resultant observed random vector Y(x1), Y(x2), Y(x3) … 

Y(xn). R is the m x m matrix of correlations among the 

training points. An exponential correlation function has 

been suggested by researchers in the past (Bichon et al., 

2008). 

 

Figure 3. Construction of Surrogate Model 

Y
*
=E(Y|x

*
)=f

T
(x

*
)β+r

T
(x

*
)R

-1
(Y-Fβ) (8) 

σY*=Var(Y|x
*
)=λ(1-r

T
R

-1
r) (9) 

In Eq. (8) and Eq. (9), F is a matrix with rows of trend 

functions f
T
(xi), r is the vector of correlations between x* 

and each of the training points, β represents the coefficients 

of the trend function. A constant trend function has been 

reported to be sufficient (Sacks et al., 1989). McFarland 

(2007) discusses the implementation of this method in 

complete detail. 

3.4 Crack Propagation Analysis 

This section explains the method used to calculate the final 

crack size as a function of number of load cycles. The 

procedure involves the evaluation of the integral in Eq. (4). 

As explained in Section 3.3, this needs to be done cycle by 

cycle and the Gaussian process surrogate model is used to 

predict the equivalent stress intensity factor in each cycle. 

Starting with the equivalent initial flaw size a0, the 

equations (Eq. (1) – Eq. (6)) described in Section 3.1 are 

No 

Use GP in Crack Growth Model 

(Predict Keqv) 

Input 

 

Crack Size 

Torsion  

Bending  

Finite Element Analysis 

(generate training 

points) 

Gaussian Process (GP) 
(Predict Keqv) 

Characteristic Plane 

Stress Intensity Factors 

KI, KII, KIII 

Keqv 

(Training Points) 

More Training Points 

Accurate ? 
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used to calculate the final crack size A after N loading 

cycles. This entire procedure is summarized in Figure 4. 

 

Figure 4. Crack Propagation Analysis 

The framework shown in Figure 4 for crack growth 

prognosis is deterministic and does not account for errors 

and uncertainty. Uncertainty can be associated with each of 

the blocks in Figure 4 and accounted for in crack growth 

prediction. The following section investigates these sources 

of uncertainty and Section 5 incorporates them into the 

crack growth analysis methodology. 

4. SOURCES OF UNCERTAINTY 

This section discusses the various sources of uncertainty and 

errors that are part of the crack growth framework 

summarized in Section 3.5 and proposes methods to handle 

different types of uncertainty.  The material properties used 

to calculate the equivalent initial flaw size are measured 

using experiments and have variability, causing variability 

in EIFS. Further, these experimental data may be sparse and 

the uncertainty in data needs to be accounted for. The crack 

growth law used for crack propagation is usually estimated 

through curve fitting of experimental data. To account for 

model uncertainty, a (normally distributed) error term is 

added to the crack growth equation and the model 

coefficients of the crack growth law are treated as random 

variables. In each cycle of loading, the stress intensity factor 

is calculated as a function of current crack size, loading and 

geometry. Repeated finite element analyses are avoided by 

the use of inexpensive surrogate models and the output of 

the surrogate model is not accurate. Further, the training 

points calculated using finite element analyses are prone to 

solution approximation and discretization errors. Further, 

the loading itself is considered to be random – a variable 

amplitude multi-axial loading case is demonstrated in this 

paper. These various sources of uncertainty can be classified 

into three different types – physical variability, data 

uncertainty and model uncertainty - as shown below. 

I. Physical Variability 

a. Loading 

b. Equivalent initial flaw size 

c. Material Properties (Fatigue Limit, Threshold Stress 

Intensity Factor) 

II. Data Uncertainty 

a. Material Properties (Fatigue Limit, Threshold Stress 

Intensity Factor) 

III. Model Uncertainty/Errors 

a. Crack growth law uncertainty 

b. Uncertainty in calculation of Stress Intensity factor 

c. Discretization error in finite element analysis 

d. Uncertainty in surrogate model output 

(Note: Variations in geometry and boundary conditions are 

sources of physical variability. These variations are not 

considered in this research work. However, these can be 

included in the proposed framework by constructing 

different finite element models (for different geometry and 

boundary conditions) and use these runs to train the 

Gaussian process surrogate model. Hence, these parameters 

are treated as inputs to the surrogate model and sampled 

randomly in the uncertainty quantification procedure 

explained later in Section 5.) 

The following subsections discuss each source of 

uncertainty in detail and propose methods to handle them. 

4.1 Physical Variability in Loading Conditions 

The loading on practical structures is rarely deterministic 

and it is difficult to quantify the uncertainty in loading. For 

the purpose of illustration, variable amplitude multi-axial 

(bending, tension and torsion) loading is considered in this 

paper. A loading history consists of a series of blocks of 

loads, the loading amplitude being constant in each block. In 

this paper, the block length is assumed to be a random 

variable and the maximum and minimum amplitudes in each 

block are also treated as random variables. A sample 

loading history is shown in Figure 5. 

 

Figure 5. Sample loading history 
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To generate one block of loading, first a block length is 

selected and then a maximum amplitude value and a 

minimum amplitude value is selected for that block. The 

entire loading history is generated by repeating this process 

and creating several successive blocks. 

4.2 Physical Variability in EIFS 

The equivalent initial flaw size derived in Eq. (3) depends 

on ΔKth, the equivalent mode-I threshold stress intensity 

factor, Δσf, the fatigue limit of the specimen and the 

geometry factor Y which in turn depends on the geometry of 

the structural component and the configuration of the crack. 

This is a deterministic quantity and can be estimated using 

finite element analysis. The distributions for the material 

properties, ΔKth and Δσf are characterized using data 

obtained from experimental testing. This is explained in 

Section 4.3. Having obtained the statistical distributions of 

ΔKth and Δσf, the distribution of a0, the equivalent initial 

flaw size, can be calculated. 

4.3 Data Uncertainty in Material Properties  (to 

characterize distributions ΔKth and Δσf ) 

This section proposes a general methodology to characterize 

uncertainty in input data, from which statistical distributions 

need to be inferred. This method is illustrated using 

experimental data available in literature to characterize the 

distribution of threshold stress intensity factor (ΔKth) and 

fatigue limit (Δσf). McDonald et al. (McDonald et al., 2009) 

proposed a method to account for data uncertainty, in which 

in the quantity of interest can be represented using a 

probability distribution, whose parameters are in turn 

represented by probability distributions. 

Consider a random variable X whose statistics are to be 

determined from experimental data, given by x = {x1, x2 .. 

xn}. For the sake of illustration, suppose that the random 

variable X follows a normal distribution, then the parameters 

(P) of this distribution, i.e. mean and variance of X can be 

estimated from the entire data set x. However, due to 

sparseness of data, these estimates of mean and variance are 

not accurate. Using resampling techniques such as 

bootstrapping method (Efron and Tibshirani, 1993), 

jackknifing (Efron, 1979) etc. the probability distributions 

(fP(P)) of the parameters (P) can be calculated. Hence for 

each instance of a set of parameters (P), X is defined by a 

particular normal distribution. However, because the 

parameters (P) themselves are stochastic, X is defined by a 

family of normal distributions. For a detailed 

implementation of this methodology, refer McDonald et al., 

2009.  

Note that the aforementioned resampling techniques are 

useful, when considerable amount of data are available. For 

example, if 30 data points are needed to construct a 

meaningful probability distribution, then resampling 

techniques are not needed. Resampling techniques are very 

useful if there are, say 8 to 20 data points. Resampling 

techniques are less meaningful when there are less than 5 

data points. 

This paper uses resampling techniques to calculate the 

distribution of the parameters (P), however does not define 

a family of distributions. Instead, it recalculates the 

distribution of the random variable X, using principles of 

conditional probability (Haldar and Mahadevan, 2000). 

Thus X follows a probability distribution conditioned on the 

set of parameters (P). Hence the distribution of X is denoted 

by fX|P(x). However, in this case, the parameters are 

represented by probability distributions fP(P). Hence, the 

unconditional probability distribution of X (fX(x)) can be 

calculated as shown in Eq. (10). 

 dPPfxfxf
PPXX

)()()(
|

 (10) 

The integral in Eq. (10) can be evaluated through quadrature 

techniques or advanced sampling methods such as Monte 

Carlo integration or Markov chain Monte Carlo Integration. 

Hence, the unconditional distribution of X which accounts 

for uncertainty in input data can be calculated. In this paper, 

this method has been used to characterize the uncertainty in 

threshold stress intensity factor (ΔKth) and fatigue limit 

(Δσf). 

4.4 Uncertainty in Crack Growth Model 

There are more than 20 different crack growth laws (e.g., 

Paris law, Foreman’s equation, Weertman’s equation) 

proposed in literature. The mere presence of many such 

different models explains that none of these models can be 

applied universally to all fatigue crack growth problems. 

Each of these models has its own limitations and 

uncertainty. In this paper, a modified Paris law has been 

used for illustration, however, the methodology can be 

implemented using any kind of crack growth model. The 

uncertainty in crack growth model can be subdivided into 

two different types: crack growth model error and 

uncertainty in model coefficients. If εcg is used to denote the 

crack growth model error, then the crack growth law can be 

expressed as: 

da/dN = φ
r
C (ΔK)

n
(1- ΔKth/ΔK)

m
 + εcg (11) 

An estimate of εcg can be obtained while calibrating the 

model parameters using statistical data fitting tools. The 

model coefficients in Paris law are C and n, and the 

uncertainty in these parameters can be represented through 

probability distributions. The stress intensity factor ΔK, as 

explained earlier is calculated using the Gaussian process 

surrogate model as explained in Section 3. The various 

sources of uncertainty in this process are addressed in 

Section 4.5. 
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4.5 Errors in Stress Intensity Factor Calculation 

As explained in Section 3, a Gaussian process model is used 

to calculate the stress intensity factor ΔK. This is done in 

two stages. First, a few finite element analysis runs are 

required to train the GP model. Second, the GP model is 

used to predict the stress intensity factor as explained in 

Section 3.3. Each of these two steps has associated errors 

and uncertainty. Finite element solutions are subject to 

discretization errors, whereas the prediction of any low-

fidelity model such as the GP model also has error. These 

two issues are discussed in this subsection. 

4.5.1 Discretization Error in Finite Element   Analysis 

Theoretically, an infinitesimally small mesh size will lead to 

the exact solutions but this is difficult to implement in 

practice. Hence, finite element analyses are carried at a 

particular mesh size and the error in the solution, caused due 

to discretization needs to be quantified. Several methods are 

available in literature but many of them quantify some 

surrogate measure of error to facilitate adaptive mesh 

refinement. The Richardson extrapolation (RE) method has 

been found to come closest to quantifying the actual 

discretization error and this method has been extended to 

stochastic finite element analysis by Rebba (Richards, 1997; 

Rebba, 2005). It should be noted that the use of Richardson 

extrapolation to calculate discretization error requires the 

model solution to be convergent and the domain to be 

discretized uniformly (uniform meshing) (Rebba et al., 

2004). Sometimes, in the case of coarse models, the 

assumption of monotone truncation error convergence is not 

valid. In the Richardson extrapolation method, the 

discretization error due to grid size, for a coarse mesh is 

given by Eq. (12). 

εh = (f1 - f2) / (r
p
 - 1) (12) 

In Eq. (12), f1 and f2 are solutions for a coarse mesh and a 

fine mesh respectively. If the corresponding mesh sizes 

were denoted by h1 and h2, then the grid refinement ratio, 

denoted by r is calculated as h2/h1. The order of 

convergence of p is calculated as: 

p = log ((f3 - f2) / (f2 - f1)) / log(r) (13) 

In Eq. (13), f3 represents the solution for a coarse mesh of 

size h3, with the same grid refinement ratio, i.e. r = h3/h2. 

The solutions f1, f2, f3 are dependent on the inputs (loading, 

current crack size, aspect ratio and angle of orientation) to 

the finite element analysis and hence the error estimates are 

also functions of these input variables. For each set of 

inputs, a corresponding error is calculated and this error is 

added to the (coarse mesh) solution from finite element 

analysis to calculate the true solution. Hence a true solution 

is associated with each set of inputs and these values are 

used as training points for the surrogate model. 

4.5.2 Uncertainty in the Surrogate Model Output 

Several finite element runs for some combination of input-

output variable values are used to train the Gaussian process 

surrogate model in this paper. Then, these surrogate models 

can be used to evaluate the stress intensity factor for other 

combinations of input variable values. GP models, as 

explained in Section 3.3, model the output as a sum of 

Gaussian variables and hence, inherently produce an output 

which is normally distributed. The expressions for mean and 

variance of the output of the GP model were given in Eq. (8) 

and Eq. (9) respectively. The output of the GP (ΔKeq) model 

is a random normal variable and in each cycle, the value for 

ΔKeq is sampled from this distribution. 

(Note: The GP model is used as a surrogate for the 

deterministic finite element model and the variance of the 

GP output accounts only for the uncertainty in replacing the 

original model with a Gaussian process and does not 

account for the uncertainty in the inputs to the model. The 

variance of the output is only dependant on the “form” of 

the surrogate model. For example, a linear surrogate model 

will lead to constant variance at untrained locations but 

unknown distribution type (Seber and Wild, 1989). The 

advantage in using a Gaussian process surrogate model is 

that not only the output variance can be calculated but also 

the distribution type can be proved to be Gaussian 

(McFarland, 2007).) 

The Gaussian process model output, i.e. the stress intensity 

factor is used in the crack growth equation to predict the 

crack size as a function of number of cycles as explained 

earlier in Section 3. The following section incorporates all 

these sources of uncertainty into the crack growth prediction 

methodology described in Section 3. 

5. UNCERTAINTY IN CRACK GROWTH 

Section 3 proposed a methodology that can be used for 

crack growth of structures with complicated geometry and 

subjected to multi-axial loading. This procedure was 

summarized using a step-by-step flowchart in Figure 4. 

Section 4 investigated the various sources of uncertainty in 

the crack growth prediction methodology and proposed 

methods to handle them. A brief summary of the various 

sources of uncertainty is given below. 

I. PHYSICAL VARIABILITY 

a. Variable amplitude multi-axial loading cycles are 

generated by considering random block lengths and 

random amplitudes within each block. 

b. The equivalent initial flaw size (EIFS) is represented by 

a probability distribution that accounts for the variability 

in material parameters, the threshold stress intensity 

factor and fatigue limit. 
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c. The material properties (fatigue limit, threshold stress 

intensity factor) are represented by probability 

distributions, inferred from experimental data.  

II. DATA UNCERTAINTY 

a. The uncertainty in data used to calculate the statistics of 

material properties (fatigue limit, threshold stress 

intensity factor) is addressed by using a sampling based 

approach that calculates a family of probability 

distributions for each material parameter. Then, this 

family of distributions is integrated into one single 

probability distribution (for each property) using the 

principles of conditional and total probability. 

III. MODEL UNCERTAINTY/ERRORS 

a. The uncertainty in crack growth model is handled by 

adding an error term to the crack growth law and by 

representing the model parameters as random variables. 

b. The calculation of stress intensity factor in each cycle 

of crack growth is facilitated using a Gaussian process 

surrogate model.  

c. The discretization error in finite element analysis is 

calculated using Richardson extrapolation and added to 

the results of FEA before training the surrogate model. 

The uncertainty (calculated as the variance) in the surrogate 

model output is modeled as a Gaussian variable calculation 

from regression results and hence, the prediction of the 

surrogate model, i.e. the Stress intensity factor is 

represented as a normal distribution. 

This section presents a sampling based strategy to combine 

all the different sources of uncertainty and thereby quantify 

the overall uncertainty in crack growth prediction as a 

function of number of loading cycles (N). The various steps 

in this procedure are outlined here. 

I. Generate training points for the Gaussian process 

surrogate model. This is done through finite element 

analysis and then by calculating the discretization 

error in each of the runs. The discretization errors are 

added to the solutions of finite element analysis and 

used to train the Gaussian process surrogate model. 

Hereon, the GP model can be used to calculate the 

stress intensity factor as a function of crack size, 

loading, aspect ratio and angle of orientation. 

II. Generate a loading history. First, randomly select a 

block length and then randomly select a maximum 

amplitude value and a minimum amplitude value for 

that particular block. Repeat the process till the 

number of cycles (N) is reached. 

III. Sample an EIFS value from the statistical distribution 

calculated in Section 4.1 and Section 4.2. 

IV. Use the deterministic procedure for crack growth 

analysis to calculate the final crack size at the end of 

N cycles. However, in each loading cycle, the stress 

intensity factor calculated from the GP model is a 

random normal variable and hence generate a random 

sample of stress intensity factor in each cycle. Also, 

the crack growth model error (εcg) is sampled in every 

cycle. 

In this algorithm, Step I is a deterministic step while Step II, 

Step III and Step IV are probabilistic. Using this algorithm, 

the crack size after N cycles can be calculated for a 

particular load history that was generated in Step II.  Using 

Monte Carlo Sampling, Steps II, III and IV can be repeated 

again and again, each leading to a final crack size at the end 

of N cycles. This can be used to characterize the distribution 

of final crack size at the end of N cycles. By varying N, the 

distribution of final crack size can be obtained as a function 

of the number of cycles (N). This information can be used to 

calculate the reliability of the structural component as a 

function of number of load cycles. Suppose that the 

component is supposed to have failed if the crack size is 

greater than a critical crack size (Ac), then the probability of 

failure can be calculated as a function of load cycles.  

Note that the proposed methodology for uncertainty 

quantification is applicable to any model-based technique 

for fatigue crack growth prognosis. Thus any appropriate 

combination of fatigue crack growth models can be used 

instead of the models used in this paper for implementing 

the proposed uncertainty quantification methodology.  

6. NUMERICAL EXAMPLE 

This section illustrates the proposed methodology to 

quantify the uncertainty in crack growth analysis through a 

numerical example. 

6.1 Description of the Problem 

A two radius hollow cylinder with an elliptical crack in fillet 

radius region is considered for this purpose. This problem 

consists of modeling an initial semi-circular surface crack 

configuration and allowing the crack shape to develop over 

time into a semi-elliptical surface crack. This is shown in 

Figure 6. 

 

Figure 6. Surface Crack in a Cylindrical Structure 

The finite element software package ANSYS (ANSYS, 

2007) version 11.0 is used to build and analyze the finite 

element model.  The crack configuration is built by 

extruding a projection of the semi-circular crack through the 

Refined  

Sub-model 

Coarse Full Model 
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mast body at the crack location.  The immediate volumes on 

either side of the crack face are identified and subdivided in 

order to allow for SIF evaluation at various locations along 

the crack front.  The crack faces (coinciding upper and 

lower surfaces of the previously mentioned volumes) are 

then modeled as surface to surface contact elements 

(CONTACT174 and TARGET170 elements) in order to 

prevent the surface penetration of the crack's upper and 

lower surfaces.  The augmented Lagrangian method is the 

algorithm used for contact simulation.  Additionally, friction 

effect is included in the material properties of the contact 

element, in which a Coulomb friction model is used.  This 

model defines an equivalent shear stress which is 

proportional to the contact pressure and the friction 

coefficient.  Friction coefficients between two crack faces 

are difficult to measure and are generally assumed to vary 

between 0 and 0.5 (Liu et al., 2007). The friction coefficient, 

μ is assumed to be equal to 0.1.   

Since the primary quantity of interest is the stress intensity 

factor at the crack tip, the volume along the crack front is 

subdivided into many smaller blocks, which allows for 

better mesh control and enables SIF evaluation at various 

locations along the crack front.  The crack region is 

constructed within a submodel of the uncracked body. The 

submodel technique is based on the St. Venant's principle, 

which states that if an actual distribution of forces is 

replaced by a statically equivalent system, the distribution of 

stress and strain is altered only near the regions of load 

application. The sub-modeling technique facilitates accurate 

stress intensity factor solutions all along the crack front 

which can be used for crack growth analysis. 

Table 1 and Table 2 list the material and geometrical 

properties of the specimen under study. 

Aluminium 7075- T6 

Modulus of Elasticity 72 GPa 

Poisson Ratio 0.32 

Yield Stress 450 MPa 

Ultimate Stress 510 MPa 

Table 1 Material properties 
 

Cylinder Properties 

Length 152.4 mm 

Inside Radius 8.76 mm 

Outside Radius 
(Narrow Sect) 14.43 mm 

Outside Radius (Wide 
Sect) 17.78 mm 

 
Table 2 Geometrical Properties 

In reality, these parameters in Table 2 and Table 3 may be 

variable and might require probabilistic treatment. However, 

as mentioned earlier, physical variability in the geometry of 

the structure, Young’s modulus, Poisson ratio, boundary 

conditions, friction coefficient between crack faces, etc are 

treated to be deterministic in this paper. The following 

subsection discusses the numerical implementation of the 

uncertainty quantification procedure. 

6.2 Algorithm for Uncertainty Quantification 

The numerical details of the different sources of uncertainty 

are presented in this section. They are given step-wise in the 

same order as in Section 5. 

I. Finite element analyses are run for 10 different crack 

sizes, 6 different loading cases, two angles of 

orientation and three different aspect ratios, amounting 

to 360 training points to construct the surrogate model. 

For each solution, three different meshes are considered 

and the discretization error is quantified as explained in 

Section 4.4.1. The discretization error is added to the 

finite element analysis solution at each training point 

and the Gaussian process model is trained to predict the 

stress intensity factor. 

II. Multi-axial variable amplitude loading cycles are 

generated by considering blocks of equal amplitude 

within one entire loading history. The block length is 

assumed to be a uniform distribution (U(0,500)) and the 

maximum amplitude and minimum amplitude for that 

block are assumed to follow normal distributions 

(N(μ1,σ1) and N(μ2,σ2) where μ1, σ1, μ2, σ2 are uniformly 

distributed on the intervals [20, 28], [2, 6], [8, 16], and 

[2, 6] respectively, in KNm). 

III. The distribution of EIFS is characterized using the data 

used by Liu and Mahadevan (Liu and Mahadevan, 

2008). However, the current research work accounts for 

uncertainty in data and treats the parameters of 

threshold stress intensity factor and fatigue limit as 

random variables as well. The distribution (conditioned 

on its parameters) of EIFS is assumed to be lognormal 

(with parameters λ, δ), with the λ following a normal 

distribution (mean = -7.60 and standard deviation = 

0.50) and δ following a lognormal distribution (mean = 

0.22 and standard deviation = 0.10). The unconditional 

distribution of EIFS is calculated using the integral in 

Eq. (8). Samples of EIFS are drawn from this 

distribution. 

IV. Paris law is used for crack growth propagation. The 

model parameter C (mean = 6.5 E-13 and standard 

deviation = 4E-13) is chosen to be lognormally 

distributed whereas m (m = 3.9) is treated as a 

deterministic quantity. These are identical to the 

distributions used by Liu and Mahadevan (Liu and 

Mahadevan, 2009). In each loading cycle, the values of 

stress intensity factor and crack growth model error 

(εcg) are sampled from probability distributions. While 

the stress intensity factor (calculated using the Gaussian 

process surrogate model) is a Gaussian variable (as 
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explained in section 4.5.2), a 5% Gaussian white noise 

is used to represent the crack growth model error. The 

latter quantity is chosen to be normal (Seber and Wild, 

1989) because it represents a fitting error while 

calculating the coefficients of modified Paris’ law. 

Note that the true value of this noise can be estimated 

from actual experimental data, and a 5% value is 

chosen only for illustration. 

Using the sampling-based framework in Section 5, the 

probability distribution of the final crack size is calculated 

as a function of the total number of cycles. A Monte Carlo 

simulation using 5000 runs is used to calculate the 

probability distribution of crack size as a function of number 

of load cycles. The mean, median and 90% prediction 

bounds of the final crack size are shown in Figure 7.  

 

Figure 7. Mean, Median and 90% Bounds 

In Figure 7, the growth of the crack is shown as a function 

of number of load cycles. As the number of cycles increase, 

there is more uncertainty and hence, the 90% prediction 

bounds are wider. This is due to the fact that each additional 

loading cycle imparts more randomness arising from 

variability in loading, variability in crack size at the end of 

previous cycle, uncertainty in the prediction of stress 

intensity factor, etc. To illustrate the increase in uncertainty, 

the standard deviation of crack size is calculated as a 

function of number of load cycles and plotted in Figure 8. 

 

Figure 8. Standard Deviation of Final Crack Size 

Figure 8 clearly shows the increase in uncertainty with 

number of load cycles. While the standard deviation of the 

initial crack size is low, it increases by about 500% at the 

end of 5000 load cycles. This increase is due to 

accumulation of different sources of uncertainty in each 

loading cycle, i.e. loading uncertainty, surrogate modeling 

errors and crack growth model errors.  

Finally, the reliability of the structural component is also 

evaluated. A critical crack size of 2.54 mm (approximately 

0.1 inch) is assumed for the purpose of illustration and the 

probability of failure is estimated as a function of number of 

load cycles and plotted in Figure 9. From Figure 9, it is seen 

that the probability of failure is negligible for about 3500 

load cycles and it gradually increases after 4000 cycles. 

 

Figure 9. Probability of Failure vs. No. Load Cycles. 

There are two reasons for the observed increase in increase 

of failure probability. Firstly, the crack is growing in size 

and secondly, the uncertainty in the estimated crack size 

also increases with each loading cycle. After 10000 cycles 

of loading, the probability of failure is approximately equal 

to 0.01. 

6.3 Individual Contributions of Uncertainty 

The previous subsection presented the effect of all the 

different sources of uncertainty in the final distribution of 

crack size. The current subsection calculates the marginal 

contributions of each source of uncertainty in the overall 

results of crack growth calculation. Such an analysis would 

identify which sources of uncertainty are critical and what 

the analyst must do in order to reduce the overall 

uncertainty in crack growth prediction. 

To calculate the contribution of one particular kind of 

uncertainty, all other quantities are assumed to be 

deterministic (at their mean values) and the results of this 

analysis are compared with the results of Section 6.2, where 

all sources of uncertainty were accounted. The individual 

contributions of each uncertainty are tabulated in Table 3. 

This approach facilitates resource allocation trade-offs 

between model refinement and data collection for the 

purpose of reduction in overall uncertainty. If the 

contribution from the uncertainty in a particular model is 
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high, then it is preferable to refine the model in order to 

reduce the uncertainty in the crack growth prediction. If the 

contribution from the data is high (as seen in Table 3), then 

it is preferable to collect more data to reduce the overall 

uncertainty in the crack growth prediction. Note that 

experimental data on material properties is used to 

characterize the distribution of the equivalent initial flaw 

size; hence, a reduction in data uncertainty would lead to 

reduction in EIFS uncertainty, and thus the overall 

uncertainty in the crack growth prediction. 

Sources of 

Uncertainty 

Considered 

Final Crack Size 

Mean 

(mm) 

Std 

(mm) 
COV 

All 0.617 0.273 0.4424 

Loading 0.592 0.068 0.1152 

Crack Growth 

Model 
0.544 0.023 0.0421 

Data Uncertainty 0.547 0.151 0.2767 

EIFS Uncertainty 0.544 0.134 0.2463 

GP Model 

Uncertainty 
0.544 5.33E-5 9.81E-6 

Table 3. Individual Contributions of Uncertainty 

The above decision inferences are qualitative; future work 

needs to quantify the contributions of various sources of 

uncertainty to the overall uncertainty in the model 

prediction. Quantitative sensitivity analysis techniques may 

be pursued for this purpose. 

7. SUMMARY 

This paper investigated the various sources of uncertainty in 

a fatigue crack growth prognosis problem and illustrated the 

proposed methods to quantify the overall uncertainty in 

crack growth prediction for structures with complicated 

geometry and multi-axial variable amplitude loading. The 

concept of equivalent initial flaw size was used to replace 

small crack growth analysis and use a long crack growth 

model, specifically modified Paris law, for crack 

propagation. A characteristic plane approach was used to 

calculate an equivalent stress intensity factor in the presence 

of multi-axial loading conditions. Crack growth under 

variable amplitude loading is modeled by including 

retardation effects in the modified Paris law. Expensive 

finite element analysis was replaced by an inexpensive 

surrogate, i.e. the Gaussian process model, to evaluate the 

stress intensity factor in each cycle for use in crack growth 

law. Several sources of uncertainty – physical variability, 

data uncertainty and modeling errors - were included in the 

crack growth analysis procedure. Physical variability 

included loading conditions and material properties such as 

threshold stress intensity factor and fatigue limit. The 

uncertainty in data used to characterize these parameters 

was accounted for. Three different types of modeling errors 

– discretization errors, surrogate modeling error and crack 

growth model error – were considered in this paper. A 

probabilistic methodology was proposed to incorporate 

these sources of uncertainty into the crack growth prediction 

methodology. A Monte Carlo based sampling approach is 

used to calculate the distribution of crack size as a function 

of number of loading cycles. By defining a suitable 

serviceability criterion (for example, crack size being 

greater than a critical value), the reliability of the structural 

component is calculated as a function of number of loading 

cycles. The methods developed for uncertainty 

quantification are applicable to any model-based fatigue 

crack growth prognosis procedure, and are not confined to 

the illustrative crack growth models used in this paper.  

This research work also reported the individual 

contributions of various sources of uncertainty to the overall 

uncertainty in crack growth prediction. This kind of study is 

popularly called as global sensitivity analysis and the 

method presented in this paper is a heuristic approach only. 

Rigorous methods for sensitivity analysis have been 

developed by several researchers around the world and 

future work would involve the application of these methods 

to crack growth analysis problems. This study would 

analyze the significance of the individual contributors, 

assess and rank their importance, and quantify the benefits 

from reducing the uncertainty in the important contributors. 

Further, this research work considered the growth of 

coplanar cracks only. Non-coplanar cracks will be modeled 

and included in uncertainty analysis in future. Also, 

additional sources of variability, uncertainty, and error, such 

as variability in the coefficient of friction between crack 

surface, material properties such as Young’s modulus, 

geometrical properties, model uncertainty in the treatment 

of mixed-mode cracking, and variance introduced by 

introduced by Monte Carlo sampling will be considered 

future. 
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NOMENCLATURE 

A Crack size 

N Number of loading cycles 

θ Equivalent initial flaw size 

ΔKth Threshold stress intensity factor  

ΔK Stress intensity factor in each cycle 
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σf Fatigue limit 

Y Geometry factor 

φ
r
    Wheeler’s retardation coefficient  

C, m, n  Parameters of modified Paris’ law  
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