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ABSTRACT 

Prognostic performance evaluation has gained 

significant attention in the past few years.
*
Currently, 

prognostics concepts lack standard definitions and 

suffer from ambiguous and inconsistent interpretations. 

This lack of standards is in part due to the varied end-

user requirements for different applications, time scales, 

available information, domain dynamics, etc. to name a 

few. The research community has used a variety of 

metrics largely based on convenience and their 

respective requirements. Very little attention has been 

focused on establishing a standardized approach to 

compare different efforts. This paper presents several 

new evaluation metrics tailored for prognostics that 

were recently introduced and were shown to effectively 

evaluate various algorithms as compared to other 

conventional metrics. Specifically, this paper presents a 

detailed discussion on how these metrics should be 

interpreted and used. These metrics have the capability 

of incorporating probabilistic uncertainty estimates 

from prognostic algorithms. In addition to quantitative 

assessment they also offer a comprehensive visual 

perspective that can be used in designing the prognostic 

system. Several methods are suggested to customize 

these metrics for different applications. Guidelines are 

provided to help choose one method over another based 

on distribution characteristics. Various issues faced by 

prognostics and its performance evaluation are 

discussed followed by a formal notational framework to 

help standardize subsequent developments. 

                                                           
* This is an open-access article distributed under the terms of the 

Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

 
*Submitted 1/2010; published 4/2010.  

1. INTRODUCTION 

In the systems health management context, prognostics 

can be defined as predicting the Remaining Useful Life 

(RUL) of a system from the inception of a fault based 

on a continuous health assessment made from direct or 

indirect observations from the ailing system. By 

definition prognostics aims to avoid catastrophic 

eventualities in critical systems through advance 

warnings. However, it is challenged by inherent 

uncertainties involved with future operating loads and 

environment in addition to common sources of errors 

like model inaccuracies, data noise, and observer faults 

among others. This imposes a strict validation 

requirement on prognostics methods to be proven and 

established though a rigorous performance evaluation 

before they can be certified for critical applications. 

 Prognostics can be considered an emerging research 

field. Prognostic Health Management (PHM) has in 

most respects been accepted by the engineered systems 

community in general, and by the aerospace industry in 

particular, as a promising avenue for managing the 

safety and cost of complex systems. However, for this 

engineering field to mature, it must make a convincing 

business case to the operational decision makers. So 

far, in the early stages, focus has been on developing 

prognostic methods themselves and very little has been 

done to define methods to allow comparison of 

different algorithms. In two surveys on methods for 

prognostics, one on data-driven methods (Schwabacher, 

2005) and one on artificial-intelligence-based methods 

(Schwabacher & Goebel, 2007), it can be seen that 

there is a lack of standardized methodology for 

performance evaluation and in many cases performance 

evaluation is not even formally addressed. Even the 

current ISO standard by International Organization for 

Standards (ISO, 2004) for prognostics in condition 

monitoring and diagnostics of machines lacks a firm 
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definition of any such methods. A dedicated effort to 

develop methods and metrics to evaluate prognostic 

algorithms is needed. 

 Metrics can create a standardized language with 

which technology developers and users can 

communicate their findings and compare results. This 

aids in the dissemination of scientific information as 

well as decision making. Metrics could also be viewed 

as a feedback tool to close the loop on research and 

development by using them as objective functions to be 

optimized as appropriate by the research effort. 

 Recently there has been a significant push towards 

crafting suitable metrics to evaluate prognostic 

performance. Researchers from government, academia, 

and industry are working closely to arrive at useful 

performance measures. With these objectives in mind a 

set of metrics have been developed and proposed to the 

PHM community in the past couple years (Saxena, 

Celaya, Saha, Saha, & Goebel, 2009b). These metrics 

primarily address algorithmic performance evaluation 

for prognostics applications but also have provisions to 

link performance to higher level objectives through 

performance parameters. Based on experience gained 

from a variety of prognostic applications these metrics 

were further refined. The current set of prognostics 

metrics aim to tackle offline performance evaluation 

methods for applications where run-to-failure data are 

available and true End-of-Life (EoL) is known a priori. 

They are particularly useful for the algorithm 

development phase where feedback from the metrics 

can be used to fine-tune prognostic algorithms. These 

metrics are continuously evolving and efforts are 

underway towards designing on-line performance 

metrics. This will help associate a sufficient degree of 

confidence to the algorithms and allow their application 

in real in-situ environments.  

1.1 Main Goals of the Paper 

This paper presents a discussion on prognostics metrics 

that were developed in NASA‟s Integrated Vehicle 

Health Management (IVHM) project under the 

Aviation Safety program (NASA, 2009). The paper 

aims to make contribution towards providing the reader 

with a better understanding of: 

 the need for separate class of prognostic 

performance metrics  

 difference in user objectives and corresponding 

needs from a performance evaluation view point 

 what can or cannot be borrowed from other 

forecasting related disciplines 

 issues and challenges in prognostics and prognostic 

performance evaluation 

 key prognostic concepts and a formal definition of 

a prognostic framework 

 new performance evaluation metrics, their 

application and interpretation of results 

 research issues and other practical aspects that 

need to be addressed for successful deployment of 

prognostics  

1.2 Paper Organization 

Section 2 motivates the development of prognostic 

metrics. A comprehensive literature review of 

performance assessment for prediction/forecasting 

applications is presented in section 3. This section also 

categorizes prognostic applications in several classes 

and identifies the differences from other forecasting 

disciplines. Key aspects for prognostic performance 

evaluation are discussed in Section 4. Technical 

development of new performance metrics and a 

mathematical framework for the prognostics problem 

are then presented in detail in Section 5. Section 6 

follows with a brief case study as an example for 

application of these metrics. The paper ends with future 

work proposals and concluding discussions in Sections 

7 and 8 respectively. 

2. MOTIVATION 

This research is motivated by two-fold benefits of 

establishing standard methods for performance 

assessment (see Figure 1). One, it will help create a 

foundation for assessing and comparing performance of 

various prognostics methods and approaches as far as 

low level algorithm development is concerned. Two, 

from a top-down perspective, it will help generate 

specifications for requirements that are imposed by 

cost-benefit and risk constraints at different system 

lifecycle stages in order to ensure safety, availability, 

and reliability. In this paper we discuss these metrics 

primarily in the context of the first benefit and only a 

brief discussion is provided on requirements 

specification.  

2.1 Prognostic Performance Evaluation 

Most of the published work in the field of prognostics 

has been exploratory in nature, such as proof-of-

concepts or one-off applications. A lack of standardized 

guidelines has led researchers to use common accuracy 

and precision based metrics, mostly borrowed from the 

diagnostics domain. In some cases these are modified 

on an ad hoc basis to suit specific applications. This 

makes it rather difficult to compare various efforts and 

choose a winning candidate from several algorithms, 

especially for safety critical applications. Research 

efforts are focusing on developing algorithms that can 

provide a RUL estimate, generate a confidence bound 

around the predictions, and be easily integrated with 

existing diagnostic systems. A key step in successful 
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deployment of a PHM system is prognosis certification. 

Since prognostics is still considered relatively 

immature (as compared to diagnostics), more focus so 

far has been on developing prognostic methods rather 

than evaluating and comparing their performances. 

Consequently, there is a need for dedicated attention 

towards developing standard methods to evaluate 

prognostic performance from a viewpoint of how post 

prognostic reasoning will be integrated into the health 

management decision making process. 

Requirement
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Performance
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Fine-tuning
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Cost of 
unscheduled 

repairs
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make a 
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Prognostics Metrics

Logistics 

efficiency

 

Figure 1: Prognostics metrics facilitate performance 

evaluation and also help in requirements specification. 

2.2 Prognostic Requirements Specification 

Technology Readiness Level (TRL) for the current 

prognostics technology is considered low. This can be 

attributed to several factors lacking today such as 

 assessment of prognosability of a system, 

 concrete Uncertainty Representation and 

Management (URM) approaches,  

 stringent Validation and Verification (V&V) 

methods for prognostics 

 understanding of how to incorporate risk and 

reliability concepts for prognostics in decision 

making 

Managers of critical systems/applications have 

consequently struggled while defining concrete 

prognostic performance specifications. In most cases, 

performance requirements are either derived from prior 

experiences like diagnostics in Condition Based 

Maintenance (CBM) or are very loosely specified. This 

calls for a set of performance metrics that not only 

encompass key aspects of predicting into the future but 

also accommodate notions from practical aspects such 

as logistics, safety, reliability, mission criticality, 

economic viability, etc. The key concept that ties all 

these notions in a prognostic framework is of 

performance tracking as time evolves while various 

trade-offs continuously arise in a dynamic situation. 

The prognostics metrics presented in this paper are 

designed with intentions to capture these salient 

features. Methodology for generating requirements 

specification is beyond the scope of this paper and only 

a brief discussion explaining these ideas is provided in 

the subsequent sections.  

3. LITERATURE REVIEW 

As research activities gain momentum in the area of 

PHM, efforts are underway to standardize prognostics 

research(Uckun, Goebel, & Lucas, 2008). Several 

studies provide a detailed overview of prognostics 

along with its distinction from detection and diagnosis 

(Engel, 2008; Engel, Gilmartin, Bongort, & Hess, 

2000). The importance of uncertainty management and 

the various other challenges in determining remaining 

useful life are well presented. Understanding the 

challenges in prognostics research is an important first 

step in standardizing the evaluation and performance 

assessment. Thus, we draw on the existing literature 

and provide an overview of the important concepts in 

prognostic performance evaluation before defining the 

new metrics. 

3.1 Prediction Performance Evaluation Methods 

Prediction or forecasting applications are common in 

medicine, weather, nuclear, finance and economics, 

automotive, aerospace, and electronics. Metrics based 

on accuracy and precision with slight variations are 

most commonly used in all these fields in addition to a 

few metrics customized to the domain. In medicine and 

finance, statistical measures are heavily used exploiting 

the availability of large datasets. Predictions in 

medicine are evaluated based on hypothesis testing 

methodologies while in finance errors calculated based 

on reference prediction models are used for 

performance evaluation. Both of them use some form 

of precision and accuracy metrics such as MSE (mean 

squared error), SD (standard deviation), MAD (mean 

absolute deviation), MdAD (median absolute 

deviation), MAPE (mean absolute percentage error) 

and similar variants. Other domains like aerospace, 

electronics, and nuclear are relatively immature as far 

as fielded prognostics applications are concerned. In 

addition to conventional accuracy and precision 

measures, a significant focus has been on metrics that 

assess business merits such as ROI (return on 

investment), TV (technical value), and life cycle cost, 

rather than reliability based metrics like MTBF (mean 

time between failure) or the ratio MTBF/MTBUR 

(mean time between unit replacements). Notions of 

false positives, false negatives and ROC (receiver 

operator characteristics) curves have also been adapted 

for prognostics (Goebel & Bonissone, 2005). 
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3.2 Summary of the Review 

Active research and the quest to find out what 

constitutes performance evaluation in forecasting 

related tasks in other domains painted a wider 

landscape of requirements and domain specific 

characteristics than initially anticipated. This naturally 

translated into identifying the similarities and 

differences in various prediction applications to 

determine what can or cannot be borrowed from those 

domains. As shown in Figure 2, a classification tree 

was generated that listed key characteristics of various 

forecasting applications and examples of domains that 

exhibited those (Saxena et al., 2008).  

Forecasting Applications

End-of-Life predictions

History data

No/Little history data

Nominal data only

Nominal & failure data

RUL 

Prediction

Trajectory 

Prediction

A failure threshold exists

Use monotonic decay models

Statistics can 

be applied

Model-based 

Data-driven

Medicine, Structures, 

Mechanical systems 

Electronics, Aerospace

Aerospace, Nuclear

Event predictions

Decay predictions
Discrete predictions

Continuous predictions

Weather, Finance

Quantitative

Qualitative

Non-monotonic models

No thresholds

Predict 

numerical values

Increasing or

decreasing trends

Economics, Supply Chain

Future behavior predictions

 

Figure 2: Categories of the forecasting applications 

(Saxena, et al., 2008). 

 Coble & Hines (2008) categorized prognostic 

algorithms into three categories based on type of 

models/information used for predictions. These types of 

information about operational and environmental loads 

are an inherent part of prognostic problems and must be 

used wherever available. From the survey it was 

identified that not only did the applications differ in 

nature, the metrics within domains also varied based on 

functionality and nature of the end use of performance 

data. This led to classifying the metrics based on end 

usage (see Table 1) and their functional characteristics 

(Figure 3). In a similar effort end users were classified 

from a health management stakeholder‟s point of view 

(Wheeler, Kurtoglu, & Poll, 2009). Their top-level user 

groups include Operations, Regulatory, and 

Engineering. It was observed that it was prognostics 

algorithm performance that translated into valuable 

information for these user groups in form or another. 

For instance, it can be argued that low level algorithmic 

performance metrics are connected to operational and 

regulatory branches through a requirement specification 

process. Therefore, further attention in this effort was 

focused on algorithmic performance metrics. 

Table 1: Classification of prognostic metrics based on 

end user requirements as adapted from Saxena, et al. 

(2008) and Wheeler, et al. (2009). 

Category End User Goals Metrics

Program 

Manager

Assess the economic 

viability of prognosis 

technology for specific 

applications before it 

can be approved and 
funded.

Cost-benefit type metrics 

that translate prognostics 

performance in terms of 

tangible and intangible 

cost savings.

Plant 

Manager

Resource allocation 

and mission planning 

based on available 

prognostic information.

Accuracy and precision 

based metrics that 

compute RUL estimates 

for specific Unit Under 

Test (UUT). Such 
predictions are based on 

degradation or damage 

accumulation models.

Operator

Take appropriate 

action and carry out 

re-planning in the 

event of contingency 

during mission.

Accuracy and precision 

based metrics that 

compute RUL estimates 

for specific UUTs. These 

predictions are based on 
fault growth models for 

critical failures.

Maintainer

Plan maintenance in 

advance to reduce 

UUT downtime and 

maximize availability.

Accuracy and precision 

based metrics that 

compute RUL estimates 

based on damage 

accumulation models.

Designer

Implement the 

prognostic system 

within the constraints 

of user specifications. 

Improve performance 
by modifying design.

Reliability based metrics 

to evaluate a design and 

identify performance 

bottlenecks. 

Computational 
performance  metrics to 

meet resource 

constraints.

Researcher

Develop and 

Implement robust 

performance 

assessment 

algorithms with 
desired confidence 

levels.

Accuracy and Precision 

based metrics that 

employ uncertainty 

management and output 

probabilistic predictions in 
presence of uncertain 

conditions.

Policy 

Makers

To assess potential 

hazards (safety, 

economic, and social) 

and establish policies 

to minimize their 
effects.

Cost-benefit-risk 

measures, Accuracy and 

Precision based RUL 

measures to establish 

guidelines & timelines for 
phasing out of aging fleet 

and/or resource allocation 

for future projects.
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 There are different types of outputs from various 

prognostic algorithms. Some algorithms assess Health 

Index (HI) or Probability of Failure (PoF) at any given 

point and others carry out an assessment of RUL based 

on a predetermined Failure Threshold (FT) (Coble & 

Hines, 2008; Orsagh, Roemer, Savage, & McClintic, 

2001; Saxena, et al., 2008). The ability to generate 

representations of uncertainty for predictions such as 

probability distributions, fuzzy membership functions, 

possibility distribution, etc., further distinguishes some 

algorithms from others that generate only point 

estimates of the predictions. This led to the conclusion 

that a formal prognostic framework must be devised 

and additional performance metrics needed to be 
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developed to accommodate most of these scenarios in 

an intuitive way. 
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Figure 3: Functional classification of prognostics 

metrics (adapted from Saxena, et al. (2008)). 

For further details on these classifications and examples 

of different applications the reader is referred to 

Saxena, et al. (2008). 

3.3 Recent Developments in the PHM Domain 

To update the survey conducted in Saxena, et al. (2008) 

relevant developments were tracked during the last two 

years. A significant push has been directed towards 

developing metrics that measure economic viability of 

prognostics. In Leao, et al. (2008) authors suggested a 

variety of metrics for prognostics based on commonly 

used diagnostic metrics. Metrics like false positives and 

negatives, prognostics effectiveness, coverage, ROC 

curve, etc. were suggested with slight modifications to 

their original definitions.  Attention was more focused 

on integrating these metrics into user requirements and 

cost-benefit analysis. A simple tool is introduced in 

Drummond & Yang (2008) to evaluate a prognostic 

algorithm by estimating the cost savings expected from 

its deployment. By accounting for variable repair costs 

and changing failure probabilities this tool is useful for 

demonstrating the cost savings that prognostics can 

yield at the operational levels. A commercial tool to 

calculate the Return on Investment (ROI) for 

prognostics for electronics systems was developed 

(Feldman, Sandborn, & Jazouli, 2008). The „returns‟ 

that are considered could be the cost savings, profit, or 

cost avoidance by the use of prognostics in a system. 

Wheeler, et al. (2009) compiled a comprehensive set of 

user requirements and mapped them to performance 

metrics separately for diagnostics and prognostics.  

 For algorithm performance assessment, Wang & 

Lee (2009) proposed simple metrics adapted from the 

classification discipline and also suggested a new 

metric called “Algorithm Performance Profile” that 

tracks the performance of an algorithm using a 

accuracy score each time a prediction is generated. In 

Yang & Letourneau (2007), authors presented two new 

metrics for prognostics. They defined a reward function 

for predicting the correct time-to-failure that also took 

into account prediction and fault detection coverage. 

They also proposed a cost-benefit analysis based metric 

for prognostics. In some other approaches model based 

techniques are adopted where discrete event 

simulations are run and results evaluated based on 

different degrees of prediction error rates (Carrasco & 

Cassady, 2006; Pipe, 2008). These approaches are 

beyond the scope of the current discussion. 

4. CHALLENGES IN PROGNOSTICS 

There are several unsolved issues in prognostics that 

complicate the performance evaluation task. These 

complications share partial responsibility for the lack of 

standardized procedures. A good set of metrics should 

accommodate all or most of these issues but not 

necessarily require all of them to have been addressed 

together in any single application. Enumerating these 

issues briefly here should help understanding the 

discussions on metrics development later. 

 Acausality: Prognostics is an acausal problem that 

requires an input from future events, for instance the 

knowledge about operational conditions and load 

profiles in order to make more accurate predictions. 

Similarly, to accurately assess the performance 

(accuracy or precision) one must know the EoL to 

compare with the predicted EoL estimates. Where the 

knowledge about these quantities is rarely and 

completely available, some estimates can be derived 

based on past usage history, plan for the mission 

profile, and predictions for future operating and 

environmental conditions that are not controllable (e.g., 

weather conditions). This however, adds uncertainty to 

the overall process and makes it difficult to judiciously 

evaluate prognostic performance.  

 Run-to-Failure Data from Real Applications: 

Another aspect that makes this evaluation further 

complicated is considered the paradox of prognostics – 

“Not taking an action on a failure prediction involves 

the risk of failure and an action (e.g. system 

maintenance and repair), on the contrary, eliminates all 

chances of validating the correctness of the prediction 
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itself”. Therefore, it has been a challenging task to 

assess long term prognostic results. For instance, 

consider the following scenario where aircraft engines 

undergo continuous monitoring for fault conditions and 

scheduled maintenance for system deterioration. In the 

PHM context a decision about when to perform the 

maintenance, if not scheduled, is a rather complex one 

that should be based on current health condition, next 

flight duration, expected operational (weather) 

conditions, availability of spares and a maintenance 

opportunity, options available for alternate planning, 

costs, risk absorbing capacity, etc. In this situation one 

could arguably evaluate a prognostic result against 

statistical (reliability) data about the RULs from similar 

systems. However, in practice such data are rarely 

available because there are typically very few faults 

that were allowed to go all the way to a failure resulting 

perhaps in an extremely unavoidable in-flight engine 

shutdown or an aborted takeoff. Furthermore, once the 

maintenance operation has been performed two 

problems arise from the perspective of performance 

evaluation. One, there is no way to verify whether the 

failure prediction was indeed correct, and two, the 

useful life of the system has now changed and must 

have  moved the EoL point in time from its previous 

estimate. Alternatively, allowing the system to fail to 

evaluate the prognosis would be cost and safety 

prohibitive. 

 Offline Performance Evaluation: The 

aforementioned considerations lead to an argument in 

favor of controlled run-to-failure (RtF) experiments for 

the algorithm development phase. While this makes it 

simpler for the offline performance evaluation some 

issues still remain. First, it is difficult to extend the 

results of offline setup to a real-time scenario. Second, 

often in an RtF experiment the setup needs frequent 

disassemblies to gather ground truth data. This 

assembly-disassembly process creates variations in the 

system performance and the EoL point shifts from what 

it may have been in the beginning of the experiment. 

Since actual EoL is observed only at the end there is no 

guarantee that a prediction made based on initial part of 

data will be very accurate. Whereas, this does not 

necessarily mean that prognostic algorithm is poorly 

trained, it is difficult to confirm otherwise. Therefore, 

one must be careful while interpreting the performance 

assessment results. Third, even controlled RtF 

experiments can be very expensive and time 

consuming, in particular if one seeks to conduct 

statistically significant number of experiments for all 

components and fault modes. 

 There is no simple answer to tackle these issues. 

However, using reasonable assumptions they can be 

tackled one step at a time. For instance, most 

prognostics algorithms make implicit assumptions of 

perfect knowledge about the future in a variety of ways 

such as following: 

 operating conditions remain within expected 

bounds more or less throughout systems life 

 any change in these conditions does not affect the 

life of the system significantly, or 

 any controllable change (e.g., operating mode 

profile) is known (deterministically or 

probabilistically) and is used as an input to the 

algorithm 

Although these assumptions do not hold true in most 

real-world situations, the science of prognostics can be 

advanced and later improved by making adjustments 

for them as new methodologies develop. 

 Uncertainty in Prognostics: A good prognostics 

system not only provides accurate and precise estimates 

for the RUL predictions but also specifies the level of 

confidence associated with such predictions. Without 

such information any prognostic estimate is of limited 

use and cannot be incorporated in mission critical 

applications (Uckun, et al., 2008). Uncertainties arise 

from various sources in a PHM system (Coppe, Haftka, 

Kim, & Yuan, 2009; Hastings & McManus, 2004; 

Orchard, Kacprzynski, Goebel, Saha, & Vachtsevanos, 

2008). Some of these sources include: 

 modeling uncertainties (modeling errors in both 

system model and fault propagation model),  

 measurement uncertainties (arise from sensor 

noise, ability of sensor to detect and disambiguate 

between various fault modes, loss of information 

due to data preprocessing, approximations and 

simplifications),  

 operating environment uncertainties,  

 future load profile uncertainties (arising from 

unforeseen future and variability in usage history 

data),  

 input data uncertainties (estimate of initial state of 

the system, variability in material properties, 

manufacturing variability), etc.  

It is often very difficult to assess the levels and 

characteristics of uncertainties arising from each of 

these sources. Further, it is even more difficult to assess 

how these uncertainties that are introduced at different 

stages of the prognostic process combine and propagate 

through the system, which most likely has a complex 

non-linear dynamics. This problem worsens if the 

statistical properties do not follow any known 

parametric distributions allowing analytical solutions.  

 Owing to all of these challenges Uncertainty 

Representation and Management (URM) has become 

an active area of research in the field of PHM. A 

conscious effort in this direction is clearly evident from 

recent developments in prognostics (DeNeufville, 

2004; Ng & Abramson, 1990; Orchard, et al., 2008; 

Sankararaman, Ling, Shantz, & Mahadevan, 2009; 
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Tang, Kacprzynski, Goebel, & Vachtsevanos, 2009). 

These developments must be adequately supported by 

suitable methods for performance evaluation that can 

incorporate various expressions of uncertainties in the 

prognostic outputs.  

 Although several approaches for uncertainty 

representation have been explored by researchers in this 

area, the most popular approach has been probabilistic 

representation. A well founded Bayesian framework 

has led to many analytical approaches that have shown 

promise (Guan, Liu, Saxena, Celaya, & Goebel, 2009; 

Orchard, Tang, Goebel, & Vachtsevanos, 2009; Saha & 

Goebel, 2009). In these cases a prediction is 

represented by a corresponding Probability Density 

Function (PDF). When it comes to performance 

assessment, in many cases a simplifying assumption is 

made about the form of distribution being Normal or 

any other known probability distribution. The 

experience from several applications, however, shows 

that this is hardly ever the case. Mostly these 

distributions are non-parametric and are represented by 

sampled outputs.  

 This paper presents prognostic performance metrics 

that incorporate these cases irrespective of their 

distribution characteristics. 

5. PROGNOSTIC FRAMEWORK 

First, a notational framework is developed to establish 

relevant context and terminology for further 

discussions. This section provides a list of terms and 

definitions that will be used to describe the prognostics 

problem and related concepts to develop the 

performance evaluation framework. Similar concepts 

have been described in the literature. They sometimes 

use different terms to describe different concepts. This 

section is intended to resolve ambiguities in 

interpreting these terms for the purpose of discussions 

in this paper. It must be noted that in the following 

discussions xt is used to denote time expressed in 

absolute units e.g., hours, minutes, seconds, etc., and 
 Ix is a time index to express time in relative units 

like operating hours, cycles, etc. It follows from the 

fact that realistic data systems sample from real 

continuous physical quantities. 

 

Table 2: Frequently used prognostic terms and time 

indexes to denote important events in a prognostic 

process. 

Prognostic Terms 

UUT Unit Under Test – an individual system for 

which prognostics is being developed. 

Although the same methodology may be 

applicable for multiple systems in a fleet, life 

predictions are generated specific to each 

UUT. 

PA Prognostic Algorithm – An algorithm that 

tracks and predicts the growth of a fault mode 

with time. PA may be data driven, model-

based or a hybrid.  

RUL Remaining Useful Life – amount of time left 

for which a UUT is usable before some 

corrective action is required. It can be 

specified in relative or absolute time units, 

e.g., load cycles, flight hours, minutes, etc. 

FT Failure Threshold – a limit on damage level 

beyond which a UUT is not usable. FT does 

not necessarily indicate complete failure of the 

system but a conservative estimate beyond 

which risk of complete failure exceeds 

tolerance limits. 

RtF Run-to-Failure – refers to a scenario where a 

system has been allowed to fail and 

corresponding observation data are collected 

for later analysis. 

  

Important Time Index Definitions (Figure 4) 

t0 Initial time when health monitoring for a UUT 

begins.  

F Time index when a fault of interest initiates in 

the UUT. This is an event that might be 

unobservable until the fault grows to 

detectable limits.  

D Time index when a fault is detected by a 

diagnostic system. It denotes the time instance 

when a prognostic routine is triggered the first 

time. 

P Time index when a prognostics routine makes 

its first prediction. Generally speaking, there is 

a finite delay before predictions are available 

once a fault is detected. 

EoL End-of-Life – time instant when a prediction 

crosses a FT. This is determined through RtF 

experiments for a specific UUT. 

EoP End-of-Prediction – time index for the last 

prediction before EoL is reached. this is a 

conceptual time index that depends on 

frequency of prediction and assumes 

predictions are updated until EoL is reached. 

EoUP End-of-Useful Predictions – time index 

beyond which it is futile to update a RUL 

prediction because no corrective action is 

possible in the time available before EoL. 
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Figure 4: An illustration depicting some important 

prognostic time indices (definitions and concepts). 

Symbols and Notations 

i time index representing time instant ti  

l  is the index for l
th

 unit under test (UUT) 

p set of all indexes when a prediction is made 

the first element of p is P and the last is EoP 

tEoL time instant at End-of-Life (EoL) 

tEoUP time for End-of-Useful-Prediction (EoUP) 

trepair time taken by a reparative action for a system 

tP time instant when the first prediction is made 

tD time instant when a fault is detected  

 if l

n
 n

th
 feature value for the l

th
 UUT at time ti 

 ic l

m
 m

th
 operational condition for the l

th
 UUT at ti 

r
l
(i) predicted RUL for the l

th
 UUT at time ti 

reference to l may be omitted for a single UUT 

)(* ir l  ground truth for RUL at time ti  

)|( jil  Prediction for time ti given data up to time tj 

for the l
th

 UUT. Prediction may be made in 

any domain, e.g., feature, health, RUL, etc. 

)(i
l

  Trajectory of predictions )|( jil  made for the 

l
th

 UUT at time tj for all times ti s.t. i > j. E.g., 

financial and weather forecasts 

)(ih l  Health of system for the l
th

 UUT at time ti 

α accuracy modifier such that ]1,0[  

α
+
 maximum allowable positive error 

α
-
 minimum allowable negative error 

λ time window modifier s.t.  PEoLP tttt  
 

where ]1,0[  

β minimum desired probability threshold 

ω weight factor for each Gaussian component 

θ parameters of RUL distribution 

φ(x) non-parameterized probability distribution for 

any variable x 

φθ(x) parameterized probability distribution for any 

variable x 

π[x] probability mass of a distribution of any 

variable x within α-bounds [α
-
,α

+
], i.e. π[x] = 




 Ι;)( xx





or 





xdxx ;)(






 

M(i) a performance metric of interest at time ti 

CM center of mass as a measure of convergence 

for a metric M 

xc,yc x and y coordinates for center of mass (CM) 

Assumptions for the Framework 

 Prognostics is condition based health assessment 

that includes detection of failure precursors from 

sensor data, prediction of RUL by generating a 

current state estimate and using expected future 

operational conditions for a specific system. 

 A suitable diagnostic algorithm correctly detects, 

identifies and isolates the system fault before it 

triggers a PA to predict evolution for that specific 

fault mode. 

 If the information about future operational 

conditions is available it may be explicitly used in 

the predictions. Any prediction, otherwise, 

implicitly assumes current conditions would 

remain in the future and/or variations from 

current operating conditions do not affect the life 

of a system. 

 RUL estimation is a prediction/ forecasting/ 

extrapolation process. 

 Algorithms incorporate uncertainty representation 

and management methods to produce RUL 

distributions. Point estimates for RUL may be 

generated from these distributions through 

suitable methods when needed. 

 RtF data are available that include sensor 

measurements, operating condition information, 

and EoL ground truth. 

 A definition of failure threshold is available that 

determines the EoL for a system beyond which 

the system is not recommended for further use. 

 In the absence of true EoL (determined 

experimentally) statistical (reliability) data such 

as MTTF (Mean Time to Failure) or MTBF 

(Mean Time Between Failures) may be used to 

define EoL with appropriate caution. 

 

In a generic scenario a PA is triggered by an 

independent diagnostic algorithm whenever it detects 

a fault in the system with high certainty. PA may take 

some time to gather more data and tune itself before it 

starts predicting the growth of that fault. Based on a 

user defined FT the PA determines where the fault is 

expected to cross the FT and EoL of the system is 

reached. An estimate of RUL is generated by 

computing the difference between estimated EoL and 

the current time. As time progresses more 

measurement data become available that are used to 

make another prediction and the estimates of EoL and 

RUL are correspondingly updated. This process 
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continues until one of the following happens: 

 the system is taken down for maintenance. 

 EoUP is reached and any further predictions may 

not be useful for failure avoidance operations. 

 the system has failed (unexpectedly). 

 the case where problem symptoms have 

disappeared (can occur if there were false alarms, 

intermittent fault, etc.). 

Definitions 

Time Index: In a prognostics application time can be 

discrete or continuous. A time index i will be used 

instead of the actual time, e.g., i=10 means t10.  This 

takes care of cases where sampling time is not uniform. 

Furthermore, time indexes are invariant to time-scales. 

Time of Detection of Fault: Let D be the time index 

for time (tD) at which the diagnostic or fault detection 

algorithm detected the fault. This process will trigger 

the prognostics algorithm which should start making 

RUL predictions as soon as enough data has been 

collected, usually shortly after the fault was detected. 

For some applications, there may not be an explicit 

declaration of fault detection, e.g., applications like 

battery health management, where prognosis is carried 

out on a decay process. For such applications tD can be 

considered equal to t0 i.e., prognostics is expected to 

trigger as soon as enough data has been collected 

instead of waiting for an explicit diagnostic flag (see 

Figure 5). 

Time to Start Prediction: Time indices for times at 

which a fault is detected (tD) and when the system starts 

predicting (tP) are differentiated. For certain algorithms 

tD = tP but in general tP ≥ tD as PAs need some time to 

tune with additional fault progression data before they 

can start making predictions (Figure 5). Cases where a 

continuous data collection system is employed even 

before a fault is detected, sufficient data may already be 

available to start making predictions and hence tP = tD. 

Prognostics Features: Let )(if l

n
 be a feature at time 

index i, where n = 1, 2, …, N is the feature index, and l 

= 1, 2, … , L is the UUT index (an index identifying the 

different units under test). In prognostics, irrespective 

of the analysis domain, i.e., time, frequency, wavelet, 

etc., features take the form of time series and can be 

physical variables, system parameters or any other 

quantity that can be computed from observable 

variables of the system to provide or aid prognosis. 

Features can be also referred to as a 1xN feature vector 

F
l
(i) of the l

th
 UUT at time index i. 

Operational Conditions: Let )(icl

m
 be an operational 

condition at time index i, where m = 1, 2, … , M is the 

condition index, and l = 1, 2, … , L is the UUT index. 

Operational conditions describe how the system is 

being operated and also include the load on the system. 

The conditions can also be referred to as a 1xM vector 

C
l
(i) of the l

th
 UUT at time index i. The matrix C

l
 for all 

times < tP is referred to as load history and for times ≥ 

tP as operational (load) profile for the system.  

Health Index: Let )(ih l  be a health index at time 

index i for UUT l = 1, 2, …, L. h can be considered a 

normalized aggregate of health indicators (relevant 

features) and operational conditions. 

Ground Truth: Ground truth, denoted by the 

subscript *, represents the best belief about the true 

value of a system variable. In the feature domain )(* if l

n
 

may be directly or indirectly calculated from 

measurements. In the health domain, )(* ih l  is the 

computed health at time index i for UUT l = 1, 2, …, L 

after a run-to-failure test. For an offline study EoL* is 

the known end-of-life point for the system. 
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Figure 5: Features and conditions for l
th

 UUT (Saxena, 

et al., 2008). 

History Data: History data, denoted by the subscript 

#, encapsulates all the a priori information we have 

about a system. Such information may be of the form of 

archived measurements or observed EoL data, and can 

refer to variables in both the feature and health domains 

represented by )(# if l

n
 and )(# ih l  respectively. For a fleet 

of systems all reliability estimates such as MTTF or 

MTBF would be considered history data. 

Point Prediction: Let )|( jil  be a prediction for a 

variable of interest at a desired point of time tj given 

information up to time tj, where tj ≤ ti (see Figure 6).   

Predictions can be made in any domain, features or 

health. In some cases it is useful to extrapolate features 

and then aggregate them to compute health and in other 

cases features are aggregated to a health and then 

extrapolated to estimate RUL. It must be noted here 
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that a point prediction may be expressed as probability 

a distribution or estimated moments derived from the 

probability distribution.  

Trajectory Prediction: Let )(i
l

 be a trajectory of 

predictions formed by point predictions for a variable 

of interest from time index i onwards such that  

)(i
l

  =  )|(),...,|1(),|( iEoPiiii lll    (see Figure 6). 

It must be noted that only the last point of this 

trajectory, i.e., )|( iEoPl  is used to estimate RUL.  

itDtFt )(irt

)|( iil

)|1( iil 

)|( iEoPl

P
re

d
ic

te
d

 V
a
ri

a
b

le

Pt

Failure Threshold

Time

)(ir l

 

Figure 6: Illustration showing a trajectory prediction. 

Predictions get updated every time instant. 

RUL: Let )(ir l  be the remaining useful life estimate 

at time index i given that the information (features and 

conditions) up to time index i and an expected 

operational profile for the future are available. RUL is 

computed as the difference between the predicted time 

of failure (where health index approaches zero) and the 

current time ti. RUL is estimated as 

ij

l ttir )( , where  izzhj l

z
 ,0)(max .      (1) 

Corresponding ground truth is computed as 

 izzhjttir l

z
z

ij

l  ,0)(maxwhere,)( **
.       (2) 

RUL vs. Time Plot: RUL values are plotted against 

time to compare with RUL ground truth (represented 

by a straight line). As illustrated in Figure 7, this 

visually summarizes prediction performance as it 

evolves through time. This plot is the foundation of 

prognostic metrics developed in subsequent sections. 
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Figure 7: Comparing RUL predictions from ground 

truth ( ]}240,70[|{  PPp , tEoL = 240, tEoP > 240) 

(Saxena, et al., 2008). 

5.1 Incorporating Uncertainty Estimates 

As discussed in section 4, prognostics is meaningless 

unless the uncertainties in the predictions are accounted 

for. PAs can handle these uncertainties in various ways 

such as propagating through time the prior probabilities 

of uncertain inputs and estimating posteriori 

distributions of EoL and RUL quantities (Orchard & 

Vachtsevanos, 2009). Therefore, the metrics should be 

designed such that they can make use of these 

distributions while assessing the performance. The first 

step in doing so is to define a reasonable point estimate 

from these distributions such that no interesting 

features get ignored in decision making. 

Computationally the simplest, and hence most widely 

used, practice has been to compute mean and variance 

estimates of these distributions (Goebel, Saha, & 

Saxena, 2008). In reality these distributions are rarely 

smooth or symmetric, thereby resulting in large errors 

due to such simplifying assumptions especially while 

carrying out performance assessment. It is, therefore, 

suggested that other estimates of central tendency 

(location) and variance (spread) be used instead of 

mean and standard deviation, which are appropriate 

only for Normal cases. For situations were normality of 

the distribution cannot be established, it is preferable to 

rely on median as a measure of location and the 

quartiles or Inter Quartile Range (IQR) as a measure of 

spread (Hoaglin, Mosteller, & Tukey, 1983). Various 

types of distributions are categorized into four 

categories and corresponding methods to compute more 

appropriate location and spread measures are suggested 

in Table 3. For the purpose of plotting and visualizing 

the data use of error bars and box-plots is suggested 

(Figure 8); more explanation is given in the following 

sections.  

+95% bound

outliers

25% quartile

50% quartile

-95% bound

1 32

1 2 3

Normal

 

Figure 8: Visual representation for distributions. 

Distributions shown on the left can be represented by 

box plots as shown on the right (Saxena, et al., 2009b). 

 While mean and variance estimates are good for 

easy understanding they can be less robust when 

deviations from assumed distribution category are 
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random and frequent. Furthermore, given the fact that 

there will be uncertainty in any prediction one must 

make provisions to account for these deviations. One 

common way to do so is to specify an allowable error 

bound around the point of interest and one could use 

the total probability of failure within that error bound 

instead of basing a decision on a single point estimate. 

As shown in Figure 9, this error bound may be 

asymmetric especially in the case of prognostics, since 

it is often argued that an early prediction is preferred 

over a late prediction.  
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
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Predicted 
EoL Distribution

EoL Point 
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of EoL within 

α-bounds
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α-bounds

 

Figure 9: Concepts for incorporating uncertainties. 

These ideas can be analytically incorporated into the 

numerical aspect of the metrics by computing the 

probability mass of a prediction falling within the 

specified α-bounds. As illustrated in the figure, the EoL 

ground truth may be very different than the estimated 

EoL and hence the decisions based on probability mass 

are expectedly more robust. Computing the probability 

mass requires integrating the probability distribution 

between the α-bounds (Figure 10).  

 The cases where analytical form of the distribution 

is available, like for Normal distributions, this 

probability mass can be computed analytically by 

integrating the area under the prediction PDF between 

the α-bounds (α
-
 to α

+
). However, for cases where there 

is no analytical form available, a summation based on 

histogram obtained from the process/algorithm can be 

used to compute this probability (see Figure 10). A 

formal way to include this probability mass into the 

analytical framework is by introducing a β-criterion, 

where a prediction is considered inside α-bounds only 

if the probability mass of the corresponding distribution 

within the α-bounds is more than a predetermined 

threshold β. This parameter is also linked to the issues 

of uncertainty management and risk absorbing capacity 

of the system.  
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Figure 10: Procedure to compute probability mass of 

RULs falling within specified α-bounds. 

 The categorization shown in Table 3 determines the 

method of computing the probability of RULs falling 

between α-bounds, i.e., area integration or discrete 

summation, as well as how to represent it visually. For 

cases that involve a Normal distribution, using a 

confidence interval represented by a confidence bar 

around the point prediction is sufficient (Devore, 2004). 

For situations with non-Normal single mode 

distributions this can be done with an inter-quartile plot 

represented by a box plot (Martinez, 2004). Box plots 

convey how a prediction distribution is skewed and 

whether this skew should be considered while 

computing a metric. A box plot also has provisions to 

represent outliers, which may be useful to keep track of 

in risk sensitive situations. It is suggested to use box 

plots superimposed with a dot representing the mean of 

the distribution. This will allow keeping the visual 

information in perspective with respect to the 

conventional plots. For the mixture of Gaussians case, 

it is recommended that a model with few (preferably n 

≤ 4) Gaussian modes is created and corresponding 

confidence bars plotted adjacent to each other. The 
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weights for each Gaussian component can then be 

represented by the thickness of the error bars. It is not 

recommended to plot multiple box plots since there is 

no methodical way to differentiate and isolate the 

samples associated to individual Gaussian components, 

and compute the quartile ranges separately for each of 

them. A linear additive model is assumed here for 

simplicity while computing the mixture of Gaussians. 
 InNNx nnn );,(...),()( 111    (3) 

where: 

)(x is a PDF with of multiple Gaussians 

ω is the weight factor for each Gaussian 

component  

N(µ, σ) is a Gaussian distribution with 

parameters µ and σ 

n is the number of Gaussian modes identified in 

the distribution. 

Table 3: Methodology to select location and spread measures along with visualization methods (Saxena, et al., 

2009b). 

Normal Distribution Mixture of Gaussians
Non-Normal 

Distribution

Multimodal

(non-Normal)

Parametric Non-Parametric

Location

(Central tendency)
Mean (µ)

Means: µ1, µ2, …, µn

weights: ω1, ω 2, …, ωn

Mean, 

Median,

L-estimator,

M-estimator

Dominant median, 

Multiple medians,

L-estimator,

M-estimator

Spread

(variability)

Sample standard deviation (σ),

IQR (inter quartile range)

Sample standard 

deviations: σ 1, σ 2, …, σ n

Mean Absolute Deviation (MAD) ,

Median Absolute Deviation (MdAD) ,

Bootstrap methods , IQR 

Visualization

Confidence Interval (CI),

Box plot with mean

Multiple CIs with varying 

bar width

Note: here ω1 > ω 2 > ω 3

Box plot with mean Box plot with mean

1

22

33

1

 

6. PERFORMANCE METRICS 

6.1 Limitations of Classical Metrics 

In Saxena, et al. (2009a) it was reported that the most 

commonly used metrics in the forecasting applications 

are accuracy (bias), precision (spread), MSE, and 

MAPE. Tracking the evolution of these metrics one can 

see that these metrics were successively developed to 

incorporate issues not covered by their predecessors. 

There are more variations and modifications that can be 

found in literature that measure different aspects of 

performance. Although these metrics captured 

important aspects, this paper focuses on enumerating 

various shortcomings of these metrics from a 

prognostics viewpoint. Researchers in the PHM 

community have further adapted these metrics to tackle 

these shortcomings in many ways (Saxena, et al., 

2008). However, there are some fundamental 

differences between the performance requirements 

from general forecasting applications and prognostics 

applications that did not get adequately addressed. This 

translates into differences at the design level for the 

metrics in either case. Some of these differences are 

discussed here. 

 These metrics provide a statistical accounting of 

variations in the distribution of RULs. Whereas this is 

meaningful information, these metrics are not designed 

for applications where RULs are continuously updated 

as more data becomes available. Prognostics prediction 

performance (e.g., accuracy and precision) tends to be 

more critical as time passes by and the system nears its 

end-of-life. Considering EoL as a fixed reference point 

in time, predictions made at different times create 
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several conceptual difficulties in computing an 

aggregate measure using conventional metrics. 

Predictions made early on have access to less 

information about the dynamics of fault evolution and 

are required to predict farther in time. This makes the 

prediction task more difficult as compared to predicting 

at a later stage. Each successive prediction utilizes 

additional data available to it. Therefore, a simple 

aggregate of performance over multiple predictions 

made is not a fair representative of overall 

performance. It may be reasonable to aggregate fixed n-

step ahead (fixed horizon) predictions instead of 

aggregating EoL predictions (moving horizon). 

Performance at specific times relative to the EoL can be 

a reasonable alternative as well. Furthermore, most 

physical processes describing fault evolution tend to be 

more or less monotonic in nature. In such cases it 

becomes easier to learn true parameters of the process 

as more data become available. Thus, it may be equally 

important to quantify how well and how quickly an 

algorithm improves as more data become available.  

 Following from the previous argument, 

conventional measures of accuracy and precision tend 

to account for statistical bias and spread arising from 

the system. What is missing from the prognostics point 

of view is a measure that encapsulates the notion of 

performance improvement with time, since prognostics 

continuously updates, i.e., successive predictions occur 

at early stages close to fault detection, middle stages 

while the fault evolves, and late stages nearing EoL. 

Depending on application scenarios, criticality of 

predictions at different stages may be ranked 

differently. A robust metric should be capable of 

making an assessment at all stages. This will not only 

allow ranking various algorithms at different stages but 

also allow switching prediction models with evolving 

fault stages instead of using a single prediction 

algorithm until EoL.  

 Time scales involved in prognostics applications 

vary widely (on the order of seconds and minutes for 

electronic components vs. weeks and years for battery 

packs). This raises an important question - “how far in 

advance is enough when predicting with a desired 

confidence?” Although the earlier the better, a 

sufficient time to plan and carry out an appropriate 

corrective action is what is sought.  While qualitatively 

these performance measures remain the same (i.e., 

accuracy and precision) one needs to incorporate the 

issues of time criticality.  

 The new metrics developed and discussed in the 

following sections attempt to alleviate some of these 

issues in evaluating prognostic performance. 

6.2 Prognostic Performance Metrics 

In this paper four metrics are discussed that can be used 

to evaluate prognostic performance while keeping in 

mind the various issued discussed earlier. These four 

metrics follow a systematic progression in terms of the 

information they seek (Figure 11). 

 The first metric, Prognostic Horizon, identifies 

whether an algorithm predicts within a specified error 

margin (specified by the parameter α, as discussed in 

the section 5.1) around the actual EoL and if it does 

how much time it allows for any corrective action to be 

taken. In other words it assesses whether an algorithm 

yields a sufficient prognostic horizon; if not, it may not 

be meaningful to continue on computing other metrics. 

If an algorithm passes the PH test, the next metric, α-λ 

Performance, goes further to identify whether the 

algorithm performs within desired error margins 

(specified by the parameter α) of the actual RUL at any 

given time instant (specified by the parameter λ) that 

may be of interest to a particular application. This 

presents a more stringent requirement of staying within 

a converging cone of the error margin as a system nears 

EoL. If this criterion is also met, the next step is to 

quantify the accuracy levels relative to the actual RUL. 

This is accomplished by the metrics Relative Accuracy 

and Cumulative Relative Accuracy. These metrics 

assume that prognostic performance improves as more 

information becomes available with time and hence, by 

design, an algorithm will satisfy these metrics criteria if 

it converges to true RULs. Therefore, the fourth metric, 

Convergence, quantifies how fast the algorithm 

converges if it does satisfy all previous metrics. These 

metrics can be considered as a hierarchical test that 

provides several levels of comparison among different 

algorithms in addition to the specific information these 

metrics individually provide regarding algorithm 

performance. 

 

Prognostic Horizon

• Does the algorithm predict within desired accuracy 
around EoLand sufficiently in advance?

α-λ Performance

• Further, does the algorithm stay within desired 
performance levels relative to RUL at a given time?

Relative Accuracy

• Quantify how accurately an algorithm performs at a 
given time relative to RUL.

Convergence

• If the performance converges (i.e. satisfies above 
metrics) quantify how fast does it converge.

 

Figure 11: Hierarchical design of the prognostics 

metrics. 
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 It must be noted that these metrics share the 

attribute of performance tracking with time unlike the 

classical metrics. Discussion on detailed definitions and 

descriptions of these metrics follows henceforth. 

Prognostic Horizon: Prognostic Horizon (PH) is 

defined as the difference between the time index i when 

the predictions first meet the specified performance 

criteria (based on data accumulated until time index i) 

and the time index for EoL. The performance 

requirement may be specified in terms of an allowable 

error bound (α) around the true EoL. The choice of α 

depends on the estimate of time required to take a 

corrective action. Depending on the situation this 

corrective action may correspond to performing 

maintenance (manufacturing plants) or bringing the 

system to a safe operating mode (operations in a 

combat zone). 

iEoL ttPH                                        (4) 

where: 

     


 



)(|min jrpjji  is the first time 

index when predictions satisfy β-criterion for a 

given α 

p is the set of all time indexes when predictions are 

made 

l is the index for l
th

 unit under test (UUT) 

β is the minimum acceptable probability mass 

r(j) is the predicted RUL distribution at time tj 

tEoL is the predicted End-of-Life  

 







 )( jr  is the probability mass of the prediction 

PDF within the α-bounds that are given by 

EoLEoL trtr    ** and  

As shown in Figure 12, the desired level of accuracy 

with respect to the EoL ground truth is specified as ±α-

bounds (shaded band). RUL distributions are then 

plotted against time for all the algorithms that are to be 

compared. In simple cases the evaluation may be based 

on point estimates (mean, median, etc.) of the 

distributions. The PH for an algorithm is declared as 

soon the corresponding prediction enters the band of 

desired accuracy. As is evident from the illustration in 

Figure 12(a), the second algorithm (A2) has a longer 

PH. However, looking closely at the plots, A1 does not 

perform much worse than A2, but this method, being 

less robust due to use of only a point estimate, results in 

very different PH values for the two algorithms. This 

can be improved by using the β-criterion, as shown in 

Figure 12(b). 
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Figure 12: (a) Illustration of Prognostics Horizon while 

comparing two algorithms based on point estimates 

(distribution means) (b) PH based on β-criterion results 

in a more robust metric. 

 Prognostic horizon produces a score that depends on 

length of ailing life of a system and the time scales in 

the problem at hand. The range of PH is between (tEoL-

tP) and max{0, tEoL-tEoP}. The best score for PH is 

obtained when an algorithm always predicts within 

desired accuracy zone and the worst score when it 

never predicts within the accuracy zone. The notion for 

Prediction Horizon has been long discussed in the 

literature from a conceptual point of view. This metric 

indicates whether the predicted estimates are within 

specified limits around the actual EoL so that the 

predictions are considered trustworthy. It is clear that a 

longer prognostic horizon results in more time available 

to act based on a prediction that has some desired 

credibility. Therefore, when comparing algorithms, an 

algorithm with longer prediction horizon would be 

preferred.  

 α-λ Performance: This metric quantifies prediction 

quality by determining whether the prediction falls 

within specified limits at particular times with respect 

to a performance measure. These time instances may be 

specified as percentage of total ailing life of the system. 

The discussion henceforth is presented in the context of 
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accuracy as a performance measure, hence α-λ 

accuracy, but any performance measure of interest may 

fit in this framework.  

 α-λ accuracy is defined as a binary metric that 

evaluates whether the prediction accuracy at specific 

time instance tλ falls within specified α-bounds (Figure 

13). Here tλ is a fraction of time between tP and the 

actual tEoL. The α-bounds here are expressed as a 

percentage of actual RUL r(iλ) at tλ.  
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where:  

λ is the time window modifier such that 
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β is the minimum acceptable probability for β-

criterion 

r(iλ) is the predicted RUL at time index iλ 
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Figure 13: (a) α-λ accuracy with the accuracy cone 

shrinking with time on RUL vs. time plot. (b) Alternate 

representation of α-λ accuracy on RUL-error vs. time 

plot. 

 As an example, this metric would determine 

whether a prediction falls within 10% accuracy (α = 

0.1) of the true RUL halfway to failure from the time 

the first prediction is made (λ = 0.5). The output of this 

metric is binary (1=Yes or 0=No) stating whether the 

desired condition is met at a particular time. This is a 

more stringent requirement as compared to prediction 

horizon, as it requires predictions to stay within a cone 

of accuracy i.e., the bounds that shrink as time passes 

by as shown in Figure 13(a). For easier interpretability 

α-λ accuracy can also be plotted as shown in Figure 

13(b). It must be noted that the set of all time indexes 

(p) where a prediction is made is determined by the 

frequency of prediction step in a PA. Therefore, it is 

possible that for a given λ there is no prediction 

assessed at time tλ if the corresponding pi 
. In such 

cases one can make alternative arrangements such as 

choosing another λ’ closest to λ such that pi ' . 

 Relative Accuracy: Relative Accuracy (RA) is 

defined as a measure of error in RUL prediction 

relative to the actual RUL r*(iλ) at a specific time index 

iλ.  
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 




ir

irir
RA

l

ll

l

*

*

1


                          (6) 

where: 

λ is the time window modifier such that 

)( PEoLP tttt  
, 

l is the index for l
th

 unit under test (UUT), 

r*(iλ) is the ground truth RUL at time index iλ, 

)( ir is an appropriate central tendency point 

estimate of the predicted RUL distribution at time 

index iλ. 

This is a notion similar to α-λ accuracy where, instead 

of finding out whether the predictions fall within a 

given accuracy level at a given time instant, accuracy is 

measured quantitatively (see Figure 14). First a suitable 

central tendency point estimate is obtained from the 

prediction probability distribution using guidelines 

provided in Table 3 and then using Eq.6. 
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Figure 14: Schematic illustrating Relative Accuracy. 

  



International Journal of Prognostics and Health Management 

 

 16  

 RA may be computed at a desired time tλ. For cases 

with mixture of Gaussians a weighted aggregate of the 

means of individual modes can be used as the point 

estimate; where the weighting function is the same as 

the one for the various Gaussian components in the 

distribution. An algorithm with higher relative accuracy 

is desirable. The range of values for RA is [0,1], where 

the perfect score is 1. It must be noted that if the 

prediction error magnitude grows beyond 100%, RA 

results in a negative value. Large errors like these, if 

interpreted in terms of α parameter for previous 

metrics, would correspond to values greater than 1. 

Cases like these need not be considered as it is 

expected that, under reasonable assumptions, preferred 

α values will be less than 1 for PH and α-λ accuracy 

metrics and that these cases would not have met those 

criteria anyway. 

 RA conveys information at a specific time. It can be 

evaluated at multiple time instances before tλ to account 

for general behavior of the algorithm over time. To 

aggregate these accuracy levels, Cumulative Relative 

Accuracy (CRA) can be defined as a normalized 

weighted sum of relative accuracies at specific time 

instances. 

  











pi

lll RAirw
p

CRA
1                 (7) 

where: 

w(r
l
(i)) is a weight factor as a function of RUL at 

all time indices  

p is the set of all time indexes before tλ when a 

prediction is made 

p is the cardinality of the set 

 In most cases it is desirable to weigh those relative 

accuracies higher that are closer to tEoL. In general, it is 

expected that tλ is chosen such that it holds some 

physical significance such as a time index that provides 

a required prediction horizon, or time required to apply 

a corrective action, etc. For instance, RA evaluated at 

t0.5 signifies the time when a system is expected to have 

consumed half of its ailing life, or in terms of damage 

index the time index when damage magnitude has 

reached 50% of the failure threshold. This metric is 

useful in comparing different algorithms for a given λ 

in order to get an idea on how well a particular 

algorithm does at significant times. Choice of tλ should 

also take into account the uncertainty levels that an 

algorithm entails by making sure that the distribution 

spread at tλ does not cross over expected tEoL by 

significant margins especially for critical applications. 

In other words the probability mass of the RUL 

distribution at tλ extending beyond EoL should not be 

too large. 

 Convergence: Convergence is a meta-metric 

defined to quantify the rate at which any metric (M) 

like accuracy or precision improves with time. It is 

defined as the distance between the origin and the 

centroid of the area under the curve for a metric is a 

measure of convergence rate. 

 ,)(
22

cPcM ytxC                       (8) 

where: 

CM is the Euclidean distance between the center of 

mass (xc, yc) and (tP, 0) 

M(i) is a non-negative prediction accuracy or 

precision metric with a time varying value 

 (xc, yc) is the center of mass of the area under the 

curve M(i) between tP and tEoUP, defined as 

following 
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 As suggested earlier, this discussion assumes that 

the algorithm performance improves with time. This is 

easily established if it has passed criteria for previous 

metrics. For illustration of the concept in Figure 15 

three cases are shown that converge at different rates. 

Lower distance means a faster convergence. 

Convergence is a useful metric since we expect a 

prognostics algorithm to converge to the true value as 

more information accumulates over time. Further, a 

faster convergence is desired to achieve a high 

confidence in keeping the prediction horizon as large as 

possible. 
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Figure 15: Convergence compares the rates at which 

different algorithms improve. 
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6.2.1 Applying the Prognostics Metrics 

In practice, there can be several situations where the 

definitions discussed above result in ambiguity. In 

Saxena, et al. (2009a) several such situations have been 

discussed in detail with corresponding suggested 

resolutions. For the sake of completeness such 

situations are very briefly discussed here.  

 With regards to PH metric, the most common 

situation encountered is when the RUL trajectory jumps 

out of the ±α accuracy bounds temporarily. Situations 

like this result in multiple time indexes where RUL 

trajectory enters the accuracy zone to satisfy the metric 

criteria. A simple and conservative approach to deal 

with this situation is to declare a PH at the latest time 

instant the predictions enter accuracy zone. Another 

option is to use the original PH definition and further 

evaluate other metrics to determine whether the 

algorithm satisfies all other requirements. Situations 

like these can occur due to a variety of reasons. 

 Inadequate system model: Real systems often 

exhibit inherent transients at different stages during 

their life cycles. These transients get reflected as 

deviations in computed RUL estimates from the 

true value if the underlying model assumed for the 

system does not account for these behaviors. In 

such cases, one must step back and refine the 

respective models to incorporate such dynamics. 

 Operational transients: Another source of such 

behaviors can be due to sudden changes in 

operational profiles under which a system is 

operating. Prognostic algorithms may show a time 

lag in adapting to such changes and hence resulting 

in temporary deviation from the real values.  

 Uncertainties in prognostic environments: 

Prognostics models a stochastic process and hence 

the behavior observed from a particular run (single 

realization of the stochastic process) may not 

exhibit the true nature of prediction trajectories. 

Assuming that all possible measures for 

uncertainty reduction have been taken during 

algorithm development, such observations should 

be treated as isolated realization of the process. In 

that case these trajectories should be aggregated 

from multiple runs to achieve statistical 

significance or more sophisticated stochastic 

analyses can be carried out. 

Plotting the RUL trajectory in the PH plot provides 

insights for such deficiencies to algorithm developers. 

It is important to identify the correct reason before 

computing a metric and interpreting its result. Ideally, 

an algorithm and a system model should be robust to 

transients inherent to the system behavior and 

operational conditions.  

 The situations discussed above are more common 

towards the end when a system nears EoL. This is 

because in most cases the fault evolution dynamics are 

too fast and complex to model or learn from data as the 

system nears EoL. Therefore, RUL curve deviates from 

the error band near tEoL. To determine whether such 

deviations are critical for post-prognostic decision 

making, the concept of tEoUP or End-of-Useful-

Predictions (EoUP) is introduced. This index represents 

the minimum allowable PH that is required to take a 

corrective measure. Any predictions made beyond 

EoUP are of little or no use from a practical viewpoint.  

6.2.2 Choosing Performance Parameters 

From a top-down perspective, the main idea behind 

these metrics is to help management generate 

appropriate specifications and requirements for 

prognostics algorithm in fielded applications. The 

outcome of these metrics depends directly on the values 

chosen for input parameters like α, λ, and β. Thus, the 

choice of values for these parameters forms an 

important aspect of performance evaluation and 

interpretation. Cost-benefit-risk analyses are generally 

performed through various methods that model the 

effects of a variety of constraints (financial costs, 

safety, criticality of mission completion, reputation, 

etc.) and derive a range of available slacks in achieving 

an overall benefit situation (pareto optimal solutions). It 

is expected that the parameters can be incorporated in 

these analyses to include the effects of prognostic 

performance on the cost-benefit of PHM. While this 

subject is out of the scope of this paper a brief 

discussion is provided for an overall perspective on 

how these parameters can be connected to safety, 

logistics and cost constraints. 

 There are systems that involve different levels of 

criticality when they fail. In a mission critical scenario 

a failure may be catastrophic and hence a limited 

number of false positives may be tolerable but no false 

negatives. In other cases the cost of acting on false 

positives may be prohibitively high. There are cases 

where it is more cost effective to tolerate several false 

negatives as opposed to reacting to a false positive and 

hence it is acceptable even if the system runs to failure 

once in a while. There are several factors that 

determine how critical it may be to make a correct 

prediction. These factors combined together should 

dictate the choice of these parameters while carrying 

out performance evaluation. Some of the most 

important factors are:  

 Time for problem mitigation: the amount of time to 

mitigate a problem or start a corrective action 

when critical health deterioration of a 

component/system has been detected is a very 

important factor. As mentioned earlier, very 
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accurate predictions at a time when no recovery 

action can be made are not useful. Hence, a 

tradeoff between error tolerance and time for 

recovery from fault should be considered. The time 

for problem mitigation will vary from system to 

system and involves multiple factors. This factor 

will have a direct consequence on λ parameter. 

 Cost of mitigation: cost of the reparative action is 

an important factor in all management related 

decisions and hence should be considered. From a 

decision making point of view this can be 

associated to the cost due to false positives. This 

factor influences α, where there is often a tradeoff 

between false positives and true positive rates. 

 Criticality of system or cost of failure: This 

quantifies the effect of false negatives. Further, 

while comparing time-critical scenarios, resources 

should be directed towards more critical and 

important components in order to efficiently 

maintain overall health of the system. Likewise, if 

the health assessment is being performed on 

multiple units in a system, the parameters for 

different units should be chosen based on a 

prioritized list of criticality. Assessment of 

criticality is usually done based on severity and 

frequency of occurrence statistics available from 

Failure Modes, Effects, and Criticality Analysis 

(FMECA) studies (MIL-STD-1629A, 1980). 

Another perspective to assess criticality is based on 

cost-benefit analysis where cost of failures is 

incorporated to assess the implications of false 

negatives (Banks & Merenich, 2007; Feldman, et 

al., 2008). 

 Uncertainty management capability: Level of 

confidence on the uncertainty management 

capability and costs of system failure determine the 

risk absorbing capacity in a particular scenario. 

The choice of β is guided by such factors. 

Note that these factors mentioned here are not arranged 

based on any order of importance; users should 

consider them based on the characteristics of their 

systems and may skip a few as appropriate.  

7. FUTURE WORK 

A natural extension of this work leads into the 

development of online prognostic performance metrics. 

This would require investigations into several issues 

that were set aside through various assumptions in the 

present work. For instance, thus far performance 

evaluation ignores the effect of future loading 

conditions that alter the rate of remaining life 

consumption. Performance evaluation without an 

explicit knowledge about EoL is a challenge for online 

metrics. These metrics will also need to include 

provisions for the effects of scheduled maintenance and 

self-healing characteristics in some systems. Further, 

the concepts presented in this paper will be refined and 

applied to a variety of applications. Developing more 

metrics like robustness and sensitivity, etc. also remains 

on the research agenda. Finally, a formal framework for 

connecting these metrics to top level requirements 

through development of uncertainty management and 

representation (URM) methods, incorporation of risk 

analysis, cost-benefit analysis, and requirements flow 

down remains a topic of interest in future work. 

8. CONCLUSION 

This paper presents several performance metrics for 

offline evaluation of prognostics algorithms. A brief 

overview of different methods employed for 

performance evaluation is also included. It has been 

shown that various forecasting related applications 

differ from prognostics in the systems health 

management context. This called for developing 

specialized metrics for prognostics. These metrics were 

developed keeping in mind various critical aspects that 

must be included in performance evaluation. A formal 

prognostic framework was presented to clearly define 

the concepts and introduce the terminology. Metrics 

with uncertainty representation capabilities were 

developed that track the performance of an algorithm 

with time. Along with detailed discussions and 

illustrations, it has been shown that these metrics can 

be successfully applied to evaluate prognostic 

performance in a standardized manner. Furthermore, it 

has been discussed that the suggested metrics can be 

employed to reflect high level requirements in a 

practical PHM system.  
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